refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 2713 results
Sort by

Filters

Technology

Platform

accession-icon GSE34200
The NIH Human Pluripotent Stem Cell Database
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

StemCellDB: the human pluripotent stem cell database at the National Institutes of Health.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE33789
The NIH Human Pluripotent Stem Cell Database (Affymetrix, mRNA)
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To broaden the appeal of the NIH Stem Cell Database, we analyzed a subset of undifferentiated human embryonic stem cell lines (5 lines in duplicate) on the Affymetrix platform. One standard culture protocol was used in conjunction with rigorous quality control. Expanded description of methods used and are available at: http://stemcelldb.nih.gov.

Publication Title

StemCellDB: the human pluripotent stem cell database at the National Institutes of Health.

Sample Metadata Fields

Sex, Cell line

View Samples
accession-icon GSE7902
Novel cell lines from mouse epiblast share defining features with human embryonic stem cells
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

The application of human embryonic stem (ES) cells has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo prior to implantation in the uterus. Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. These cells, which we refer to as EpiSCs (post-implantation epiblast-derived stem cells), express transcription factors known to regulate pluripotency, maintain their genomic integrity, and robustly differentiate into the major somatic cell types as well as primordial germ cells (PGCs). The post-ES cell lines are distinct from mouse ES cells in their epigenetic state and the signals controlling their differentiation. Furthermore, post-ES and human ES cells share patterns of gene expression and signalling responses that normally function in the epiblast. These results show that epiblast cells can be maintained as stable cell lines and interrogated to understand how pluripotent cells generate distinct fates during early development.

Publication Title

New cell lines from mouse epiblast share defining features with human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7865
Gene expression in undifferentiated human ES cells - Illumina
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

The application of human embryonic stem (ES) cells in medicine

Publication Title

New cell lines from mouse epiblast share defining features with human embryonic stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50658
Two faces of polarized macrophages: differential effects of M1 and M2 macrophage subtypes on lung cancer progression
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Macrophages in tumor microenvironment have been characterized as M1- and M2-polarized subtypes. This study sought to investigate the effects of different macrophage subtypes on the biological behavior and global gene expression profiles of lung cancer cells. Expression microarray and bioinformatics analyses indicated that the different macrophage subtypes mainly regulated genes involved in cell cycle, cytoskeletal remodeling, coagulation, cell adhesion and apoptosis pathways in A549 cells, a pattern that correlated with the altered behavior of A549 cells observed after coculture with macrophage subtypes.

Publication Title

Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE16014
Expression data from effects of Ganoderma lucidum polysaccharides F3 on human monocytic leukemia cell line THP-1
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

In order to identify patterns of gene expression associated with biological effects in THP-1 cells induced by F3, we performed a transcriptomic analysis on the THP-1 control and F3-treated THP-1 cells by oligonucleotide microarray

Publication Title

Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE38678
Cancer-Associated Fibroblasts Support Lung Cancer Stemness through Paracrine IGF-II/IGF1R/Nanog Signaling
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The CLS1/CAF co-culture maintained the cancer stemness. This cancer stemness was lost when the CAF feeder cells were removed during passaging.

Publication Title

Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE92342
BRCA1 Represses DNA Replication Fork Firing and Prevents Mitotic Catastrophe through Antagonizing Estrogen Signaling during Pregnancy
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The mammary gland at early stages of pregnancy undergoes fast cell proliferation, yet the mechanism to ensure its genome integrity is largely unknown. Here we show that pregnancy enhances expression of genes involved in numerous pathways, including most genes encoding replisomes. In mouse mammary glands, replisome genes are positively regulated by estrogen/ERa signaling but negatively regulated by BRCA1. Upon DNA damage, BRCA1 deficiency markedly enhances DNA replication initiation. BRCA1 deficiency also preferably impairs DNA replication checkpoints mediated by ATR and CHK1 but not by WEE1, which inhibits DNA replication initiation through CDC7-MCM2 pathway and enables BRCA1-deficient cells to avoid further genomic instability. Thus, BRCA1 and WEE1 inhibit DNA replication initiation in a parallel manner to ensure genome stability for mammary gland development during pregnancy.

Publication Title

BRCA1 represses DNA replication initiation through antagonizing estrogen signaling and maintains genome stability in parallel with WEE1-MCM2 signaling during pregnancy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP050988
Transcriptome analyses of dBRWD3 mutant, and dBRWD3, yem double mutant brain
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We report the high-throughput profiling of brain RNA from three Drosophila stains: dBRWD3PX2/+, dBRWD3PX2/PX2 and dBRWD3PX2/PX2, yemGS21861/GS21861. By obtaining over 50 million reads of sequence, WE compared the transcriptomic differences among the brains from these three stains. We found that the expression of 871 genes was significantly different between heterozygous control and homozygous dBRWD3 mutant brains (484 upregulated genes, 387 downregulated genes, p<0.05). Gene ontology (GO) analysis of the 871 genes revealed a broad spectrum of biological processes, ranging from synaptic activity to housekeeping metabolism subjective to dBRWD3 regulation. Among the 387 downregulated genes, the expression of 360 genes (92.8%) was increased in the dBRWD3, yem double mutant brains compared with dBRWD3 mutant. Among the 484 upregulated genes, the expression of 412 genes (85.1%) was decreased in the double mutant brains. These differential genes were evenly distributed on X chromosome and autosomes (149 on X, 178 on 2L, 154 on 2R, 166 on 3L, and 207 on 3R). These analyses indicate that dBRWD3 regulates gene expression in the brain mainly through the HIRA/YEM complex. Overall design: Examination of brain transcriptome in 3 Drosophila strains.

Publication Title

Intellectual disability-associated dBRWD3 regulates gene expression through inhibition of HIRA/YEM-mediated chromatin deposition of histone H3.3.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE24587
EpsteinBarr virus (EBV) Rta-mediated cell cycle arrest enables permissive replication of EBV and Kaposis sarcoma-associated herpesvirus in 293 cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Epstein-Barr virus (EBV) Rta is a latent-lytic molecular switch evolutionarily conserved in all gamma-herpesviruses. In previous studies, doxycycline-inducible Rta was shown to potently produce an irreversible G1 arrest followed by cellular senescence in 293 cells. Here, we demonstrate that in this system the inducible Rta not only reactivates resident genome of EBV but also that of Kaposis sarcoma-associated herpesvirus (KSHV), to similar efficiency. However, Rta-induced senescence program was terminated by the robust viral lytic cycle replication that eventually caused cell death. Furthermore, prior to the abrupt expression of immediate-early protein (EBV BZLF1 or KSHV RTA), Rta simultaneously down-regulates cell cycle activators (c-Myc, CDK6, CCND2) and up-regulates senescence-related genes (p21, 14-3-3s). Since Rta is a viral immediate-early transcriptional activator, it is envisioned that during the initial stage of viral reactivation, Rta may engage to modulate the host transcriptome, to halt cell cycle progression, and to maintain an ideal environment for manufacturing infectious virions.

Publication Title

Epstein-Barr virus (EBV) Rta-mediated EBV and Kaposi's sarcoma-associated herpesvirus lytic reactivations in 293 cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact