HMGN (high mobility group N) is a family of intrinsically disordered nuclear proteins that binds to nucleosomes, alters the structure of chromatin and affects transcription. A major unresolved question is the extent of functional specificity, or redundancy, between the various members of the HMGN protein family.
Effects of HMGN variants on the cellular transcription profile.
Specimen part
View SamplesThe effect of HMGN1 protein on gene expression of mouse ESC, NP and Neurons were investigated by comparing the transcriptome between Hmgn1+/+ and Hmgn1 -/- cells.
HMGN1 modulates nucleosome occupancy and DNase I hypersensitivity at the CpG island promoters of embryonic stem cells.
Specimen part
View SamplesThe rat pineal transcriptome was sequenced using mid-day and mid-night samples to describe the pineal transcriptome and to identify transcripts that exhibit day/night differences in expression.
Circadian changes in long noncoding RNAs in the pineal gland.
No sample metadata fields
View SamplesMacrophages in tumor microenvironment have been characterized as M1- and M2-polarized subtypes. This study sought to investigate the effects of different macrophage subtypes on the biological behavior and global gene expression profiles of lung cancer cells. Expression microarray and bioinformatics analyses indicated that the different macrophage subtypes mainly regulated genes involved in cell cycle, cytoskeletal remodeling, coagulation, cell adhesion and apoptosis pathways in A549 cells, a pattern that correlated with the altered behavior of A549 cells observed after coculture with macrophage subtypes.
Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression.
Specimen part, Cell line
View SamplesIn order to identify patterns of gene expression associated with biological effects in THP-1 cells induced by F3, we performed a transcriptomic analysis on the THP-1 control and F3-treated THP-1 cells by oligonucleotide microarray
Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction.
Cell line
View SamplesCompared the global gene expression profiles of HD- and CON-iPSC-derived neurons
Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington's disease iPSCs.
Sex, Age, Specimen part
View SamplesThe CLS1/CAF co-culture maintained the cancer stemness. This cancer stemness was lost when the CAF feeder cells were removed during passaging.
Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.
Specimen part, Subject, Time
View SamplesWhile dendritic cells (DCs) are known to play a major role in the process of vaccination, the mechanisms by which vaccines induce protective immunity in humans remain elusive. Herein, we used gene microarrays to characterize the transcriptional programs induced over time in human monocyte-derived DCs (moDCs) in vitro in response to influenza H1N1 Brisbane, Salmonella enterica and Staphylococcus aureus. We built a data-driven modular analytical framework focused on 204 pathogen-induced gene clusters. The expression of these modules was analyzed in response to 16 well-defined ligands, targeting TLRs, cytoplasmic PAMP receptors and cytokine receptors. This multi-dimensional framework covers the major biological functions of APC, including the IFN response, inflammation, DC maturation, T cell activation, antigen processing, cell motility and histone regulation. This framework was used to characterize the response of monocytes and moDCs to 14 commercially available vaccines. These vaccines displayed quantitatively and qualitatively distinct modular signatures in monocytes and DCs, in particular Fluzone and Pneumovax, highlighting the functional and phenotypic differences between APC subsets. This modular framework allows the application of systems immunology approaches to study early transcriptional changes in human APC subsets in response to pathogens and vaccines, which might guide the development of improved vaccines.
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.
Specimen part, Subject, Time
View SamplesWhile dendritic cells (DCs) are known to play a major role in the process of vaccination, the mechanisms by which vaccines induce protective immunity in humans remain elusive. Herein, we used gene microarrays to characterize the transcriptional programs induced over time in human monocyte-derived DCs (moDCs) in vitro in response to influenza H1N1 Brisbane, Salmonella enterica and Staphylococcus aureus. We built a data-driven modular analytical framework focused on 204 pathogen-induced gene clusters. The expression of these modules was analyzed in response to 16 well-defined ligands, targeting TLRs, cytoplasmic PAMP receptors and cytokine receptors. This multi-dimensional framework covers the major biological functions of APC, including the IFN response, inflammation, DC maturation, T cell activation, antigen processing, cell motility and histone regulation. This framework was used to characterize the response of monocytes and moDCs to 14 commercially available vaccines. These vaccines displayed quantitatively and qualitatively distinct modular signatures in monocytes and DCs, in particular Fluzone and Pneumovax, highlighting the functional and phenotypic differences between APC subsets. This modular framework allows the application of systems immunology approaches to study early transcriptional changes in human APC subsets in response to pathogens and vaccines, which might guide the development of improved vaccines.
Transcriptional specialization of human dendritic cell subsets in response to microbial vaccines.
Specimen part, Subject, Time
View Samples