Doxorubicin is considered one of the most potent established chemotherapeutics in the treatment of liposarcoma; however, the response rates usually below 30%, are still disappointing. This study was performed to identify gene expression changes in liposarcoma after doxorubicin treatment. Cells of 19 primary human liposarcoma were harvested intraoperatively and brought into cell culture. Cells were incubated with doxorubicin for 24 h, RNA was isolated and differential gene expression was analysed by the microarray technique.
Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures.
Sex
View SamplesThis study was performed to identify gene expression differences in not otherwise specified soft tissue sarcomas (NOS, malignant fibrous histiocytomas) and correlate them to histological findings and the clinical course. RNA was isolated and differential gene expression was analysed by the microarray technique.
Malignant fibrous histiocytoma--pleomorphic sarcoma, NOS gene expression, histology, and clinical course. A pilot study.
Sex
View SamplesWe assessed the apoptotic and antiproliferative effects of resveratrol, pycnogenol and its metabolites on HT1080 human fibrosarcoma cells in vitro. Viability, apoptosis and necrosis were quantified by FACS analysis (Propidiumiodide/AnnexinV staining). Gene expression was analysed by RNA-Microarray. Cell proliferation was analysed by BrdU ELISA assay.
Resveratrol induces apoptosis and alters gene expression in human fibrosarcoma cells.
Cell line, Treatment
View SamplesGLUCOCORTICOIDS are steroid hormones that strongly influence intermediary carbohydrate metabolism by increasing the transcription rate of glucose-6-phosphatase (G6Pase) a key enzyme of gluconeogenesis, and suppress the immune system which makes them one of the most important therapeutic agents in the treatment of allergic, autoimmune and inflammatory diseases. The biologic actions of circulating glucocorticoids are transmitted to the cells nucleus by the glucocorticoid receptor (GR). The nuclear liver X receptors (LXRs) bind to cholesterol metabolites, heterodimerize with the retinoid X receptor (RXR), and regulate the cholesterol turnover, the hepatic glucose metabolism by decreasing the expression of G6Pase, and repress a set of inflammatory genes in immune cells. The aim of this study is to evaluate the crosstalk between the GR- and LXR-mediated signaling systems. Transient transfection-based reporter assays and gene silencing methods using siRNAs for LXRs showed that overexpression/ligand (GW3965) activation of LXRs/RXRs repressed GR-stimulated transactivation of certain glucocorticoid response element (GRE)-driven promoters in a gene-specific fashion. Activation of LXRs by GW3965 attenuated dexamethasone-stimulated elevation of circulating glucose in rats and suppressed dexamethasone-induced mRNA expression of hepatic glucose-6-phosphatase (G6Pase) in rats, mice and human hepatoma HepG2 cells. In microarray transcriptomic analysis of rat liver, GW3965 differentially regulated glucocorticoid-induced transcriptional activity of about 15% of endogenous glucocorticoid-responsive genes. Mechanistically, and in vitro chromatin immunoprecipitation assay, we found that LXR/RXR bound GREs and inhibited GR binding to these DNA sequences in a gene-specific fashion. These novel results were further confirmed in in vivo binding assays, and in gel mobility shift assays, where recombinant LXR/RXR proteins were used to examine their interaction with classic or G6Pase GREs. We propose that administration of LXR agonists may be beneficial in glucocorticoid treatment- or stress-associated dysmetabolic states by directly attenuating the transcriptional activity of the GR on glucose and/or lipid metabolism.
Liver x receptors regulate the transcriptional activity of the glucocorticoid receptor: implications for the carbohydrate metabolism.
Specimen part
View SamplesGlucocorticoids play central roles in the regulation of energy metabolism by shifting it toward catabolism, while AMPK is the master regulator of energy homeostasis, sensing energy depletion and stimulating pathways of increasing fuel uptake and saving on peripheral supplies. We showed here that AMPK regulates glucocorticoid actions on carbohydrate metabolism by targeting the glucocorticoid receptor (GR) and modifying transcription of glucocorticoid-responsive genes in a tissue- and promoter-specific fashion. Activation of AMPK in rats reversed glucocorticoid-induced hepatic steatosis and suppressed glucocorticoid-mediated stimulation of glucose metabolism. Transcriptomic analysis in the liver suggested marked overlaps between the AMPK and glucocorticoid signaling pathways directed mostly from AMPK to glucocorticoid actions. AMPK accomplishes this by phosphorylating serine 211 of the human GR indirectly through phosphorylation and consequent activation of p38 MAPK and by altering attraction of transcriptional coregulators to DNA-bound GR. In human peripheral mononuclear cells, AMPK mRNA expression positively correlated with that of glucocorticoid-responsive GILZ, which correlated also positively with the body mass index of subjects. These results indicate that the AMPK-mediated energy control system modulates glucocorticoid action at target tissues. Since increased action of glucocorticoids is associated with development of metabolic disorders, activation of AMPK could be a promising target for developing pharmacologic interventions to these pathologies.
AMPK regulates metabolic actions of glucocorticoids by phosphorylating the glucocorticoid receptor through p38 MAPK.
Sex
View SamplesOct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription-factors (TFs), and chromatin-states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that early in reprogramming OSK extensively bind somatic-enhancers and initiate their decommissioning by recruiting Hdac1. Concurrently, OSK engage other sites, including specific pluripotency-enhancers, and induce the relocation of somatic TFs to these sites and away from somatic-enhancers, extending somatic-enhancer decommissioning genome-wide. Pluripotency-enhancer selection early in reprogramming occurs predominantly at sites with high OSK-motif densities and requires collaborative binding by OSK. Most pluripotency-enhancers are selected later and occupied by OS and stage-specific-TFs like Esrrb. Overexpression of stage-specific-TFs influences reprogramming efficiency by changing OSK-occupancy, somatic-enhancer decommissioning, and pluripotency-enhancer selection. We propose that collaborative interactions among OSK and with stage-specific-TFs direct both somatic-enhancer decommissioning and pluripotency-enhancer selection, which drives the enhancer reorganization underlying reprogramming Overall design: RNA-seq
Cooperative Binding of Transcription Factors Orchestrates Reprogramming.
Specimen part, Cell line, Subject
View SamplesThe ts-p53 E285K protein is a rare p53 mutant with temperature-sensitive (ts) loss of function characteristics. In cancer cells, which express ts-p53 E285K intriniscally, endogenous wild type p53 activity is reconstituted by appropriate cultivation temperature (permissive condition). At non-appropriate cultivation temperature (restrictive condition) this p53 mutant is inactive. The present study took advantage of this mechanism and employed IPH-926 lobular breast cancer cells and BT-474 ductal breast cancer cells, which both harbor endogenous ts-p53 E285K, for the transcriptional profiling of p53-responsive genes. This new approach eliminated the need for genetic modification or cytotoxic stimulation to achive a p53 response in the cells being investigated .
IPH-926 lobular breast cancer cells harbor a p53 mutant with temperature-sensitive functional activity and allow for profiling of p53-responsive genes.
Specimen part, Cell line, Treatment
View SamplesHuman solid tumors contain rare cancer side population (SP) cells, which expel the fluorescencent dye H33342 and display cancer stem cell characteristics. Transcriptional profiling of cancer SP cells isolated by H33342 fluorescence analysis is a newly emerging approach to discover cancer stem cell markers and aberrant differentiation pathways. Using Affymetrix expression microarrays this study investigated differential gene expression between SP and non-SP (NSP) cells isolated from the CAL-51 human mammary carcinoma cell line.
Down-regulation of the fetal stem cell factor SOX17 by H33342: a mechanism responsible for differential gene expression in breast cancer side population cells.
Specimen part
View SamplesCase story. A patient with massive infiltration of the visceral adipose tissue depot by BAT in a patient with a catecholamine secreting paraganglioma. BAT tissue was identified by protein expression of UCP1 (western blotting and immunostaining)
Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The histone methyltransferase Wbp7 controls macrophage function through GPI glycolipid anchor synthesis.
Specimen part, Treatment
View Samples