The objective of this experiment was to determine global gene expression change in triple negative cell line upon knockdown of TGFBR3. Genotype specific differences in expression profiles have been evaluated using human HuGene1.0-ST affymetrix array. RNA was extracted from SUM159 controls and SUM159 TGFBR3KD cells cultured in 3-dimensional in vitro system.
Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer.
Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.
Sex, Age, Specimen part
View SamplesMammary gland development and luminal differentiation occur largely postnatally during puberty and pregnancy. We found that pregnancy had the most significant effects on stem cells, inducing a distinct epigenetic state that remained stable through life.
Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.
Sex, Specimen part
View SamplesMammary gland development and luminal differentiation occur largely postnatally during puberty and pregnancy. To explore the role of DNA methylation in luminal cell differentiation and pregnancy-induced changes, we determined the genome-wide DNA methylation and gene expression profiles of mammary epithelial stem, luminal progenitor, and mature luminal cells at different reproductive stages. We found that pregnancy had the most significant effects on stem cells, inducing a distinct epigenetic state that remained stable through life. Integrated analysis of gene expression, DNA methylation, and histone modification profiles revealed cell type and reproductive stage-specific changes in molecular signatures. We also identified p27 and TGF signaling as key regulators of luminal progenitor cell proliferation based on their expression patterns and by the use of explant cultures. Our results suggest relatively minor changes in DNA methylation during luminal cell differentiation as compared to the significant effects of pregnancy on mammary epithelial stem cells.
Age- and pregnancy-associated DNA methylation changes in mammary epithelial cells.
Sex, Specimen part
View SamplesPompe disease is caused by autosomal recessive mutations in the GAA gene, which encodes acid alpha-glucosidase. Although enzyme replacement therapy has recently improved patient survival greatly, the results in skeletal muscles and for advanced disease are still not satisfactory. Here, we report the derivation of Pompe disease induced pluripotent stem cells (PomD-iPSCs) and their potential for pathogenesis modeling, drug testing and disease marker identification. PomD-iPSCs maintained pluripotent features, and had low GAA activity and high glycogen content. Cardiomyocyte-like cells (CMLCs) differentiated from PomD-iPSCs recapitulated the hallmark Pompe disease pathophysiological phenotypes, including high levels of glycogen, abundant intracellular LAMP-1- or LC3-positive granules, and multiple ultrastructural aberrances. Drug rescue assessment showed that exposure of PomD-iPSC-derived CMLCs to rhGAA reversed the major pathologic phenotypes. Further, L-carnitine and 3- methyladenine treatment reduced defective cellular respiration and buildup of phagolysosomes, respectively, in the diseased cells. By comparative transcriptome analysis, we identified glycogen metabolism, lysosome and mitochondria related marker genes whose expression robustly correlated with the therapeutic effect of drug treatment in PomD-iPSC-derived CMLCs. Collectively, these results demonstrate that PomD-iPSCs are a promising in vitro disease model for development of novel therapeutic strategies for Pompe disease.
Human Pompe disease-induced pluripotent stem cells for pathogenesis modeling, drug testing and disease marker identification.
Specimen part
View SamplesMounting evidence points to a link between a cancer possessing stem-like properties and a worse prognosis. To understand the biology, a common approach is to integrate network biology with signal processing mechanics. That said, even with the right tools, predicting the risk for a highly susceptible target using only a handful of gene signatures remains very difficult. By compiling the expression profiles of a panel of tumor stem-like cells (TSLCs) originating in different tissues, comparing these to their parental tumor cells (PTCs) and the human embryonic stem cells (hESCs), and integrating network analysis with signaling mechanics, we propose that network topologically-weighted signaling processing measurements under tissue-specific conditions can provide scalable and predicable target identification.
Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer.
Specimen part
View SamplesRetinal ganglion cells (RGCs) and retinal pigment epithelium (RPE) cells are two retinal cell types that are affected by the most prevalent retinal diseases leading to irreversible blindness, such as glaucoma affecting the former and age-related macular degeneration affecting the latter. One of the most promising approaches for the therapy of these diseases is via the autologous transplantation of RGC or RPE cells derived from the induced pluripotent stem cells (iPSCs). This emphasizes the importance of detailed characterization and understanding of the mechanisms of differentiation of iPSCs into retinal lineages on the genome-wide scale. Such information can be used to identify novel crucial regulators of differentiation, optimisation of differentiation protocols to make them more efficient and safe, identification of novel specific biomarker signatures of differentiated cells. In this study, we performed the genome-wide transcriptome analysis of terminally differentiated RGC and RPE lineages, as well as intermediate retinal progenitor cells (RPCs) of optic vesicles (OVs) derived from the human induced pluripotent stem cells (iPSCs). In our analysis we specifically focused on the classes of transcripts that encode regulators of gene expression, such as transcription factors, epigenetic factors, and components of signaling pathways.
Expression profiling of cell-intrinsic regulators in the process of differentiation of human iPSCs into retinal lineages.
Specimen part
View SamplesCompared the global gene expression profiles of HD- and CON-iPSC-derived neurons
Elucidating the role of the A2A adenosine receptor in neurodegeneration using neurons derived from Huntington's disease iPSCs.
Sex, Age, Specimen part
View SamplesStevens-Johnson syndrome (SJS) and toxic epidermal necrolysis
Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis.
No sample metadata fields
View SamplesStevens-Johnson syndrome (SJS) and toxic epidermal necrolysis
Granulysin is a key mediator for disseminated keratinocyte death in Stevens-Johnson syndrome and toxic epidermal necrolysis.
No sample metadata fields
View Samples