Extramedullary hematopoiesis (EMH) refers to the differentiation of hematopoietic stem cells (HSCs) into effector cells that occurs in compartments outside of the bone marrow. Previous studies linked pattern recognition receptor (PRR)-expressing HSCs, EMH and immune responses to microbial stimuli. However, the factors that regulate EMH and whether EMH operates in broader immune contexts remain unknown. Here, we demonstrate a previously unrecognized role for thymic stromal lymphopoietin (TSLP) in promoting the population expansion of progenitor cells in the periphery and identify that TSLP-elicited progenitors differentiate into effector cells including macrophages, dendritic cells and granulocytes that contribute to TH2 cytokine responses. The frequency of circulating progenitor cells was also increased in allergic patients with a gain-of-function polymorphism in TSLP, suggesting the TSLP-EMH pathway may operate in human disease. These data identify that TSLP-induced EMH contributes to the development of allergic inflammation and indicate that EMH is a conserved mechanism of innate immunity.
Thymic stromal lymphopoietin-mediated extramedullary hematopoiesis promotes allergic inflammation.
Sex, Specimen part
View SamplesExtracellular vesicles (EVs) enable cell-to-cell communication in the nervous system essential for development and adult function. Endosomal Sorting Complex Required for Transport (ESCRT) complex proteins regulate EV formation and release. Recent work shows loss of function (LOF) mutations in, CHMP1A, which encodes one ESCRT-III member, cause autosomal recessive microcephaly with pontocerebellar hypoplasia in humans (Mochida et al., 2012). Here we show CHMP1A is required for maintenance of progenitors in human cerebral organoids and that mouse Chmp1a is required for progenitor proliferation in cortex and cerebellum and specifically for sonic hedgehog (SHH) mediated proliferation through SHH secretion. CHMP1A mutation reduces intraluminal vesicle (ILV) formation in multivesicular bodies (MVBs), and EV release. SHH protein is present on a subset of EVs marked by a unique set of proteins we call ART-EVs. CHMP1A's requirement in formation of ART-EVs and other EVs provides a model to elucidate EV functions in multiple brain processes. Overall design: Gene expression profiling in a hiPSC WT line and a hiPSC CHMP1A null line. Comparative analysis by RNA-seq in hIPSCs and directed differentiation to cerebral organoids. Treatment with smoothened agonist (SAG) was used for examination of SHH dependent response in WT and CHMP1A null organoids.
The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles.
Specimen part, Subject
View SamplesRecessive dystrophic epidermolysis bullosa (RDEB) is a genodermatosis characterized by fragile skin forming blisters that heal invariably with scars. It is due to mutations in the COL7A1 gene encoding type VII collagen, the major component of anchoring fibrils connecting the cutaneous basement membrane to the dermis. Identical COL7A1 mutations often result in inter- and intra-familial disease variability, suggesting that additional modifiers contribute to RDEB course. Here, we studied a monozygotic twin pair with RDEB presenting markedly different phenotypic manifestations, while expressing similar amounts of collagen VII. Genome-wide expression analysis in twins' fibroblasts showed differential expression of genes associated with TGF- pathway inhibition. In particular, decorin, a skin matrix component with anti-fibrotic properties, was found to be more expressed in the less affected twin. Accordingly, fibroblasts from the more affected sibling manifested a profibrotic and contractile phenotype characterized by enhanced -smooth muscle actin and plasminogen activator inhibitor 1 expression, collagen I release and collagen lattice contraction. These cells also produced increased amounts of proinflammatory cytokines interleukin 6 and monocyte chemoattractant protein-1. Both TGF- canonical (Smads) and non-canonical (MAPKs) pathways were basally more activated in the fibroblasts of the more affected twin. The profibrotic behaviour of these fibroblasts was suppressed by decorin delivery to cells. Our data show that the amount of type VII collagen is not the only determinant of RDEB clinical severity, and indicate an involvement of TGF- pathways in modulating disease variability. Moreover, our findings identify decorin as a possible anti-fibrotic/inflammatory agent for RDEB therapeutic intervention.
Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity.
Specimen part, Disease
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
Sex, Specimen part, Treatment
View SamplesIdentified genes deregulated in mouse primary hepatocytes after modulation of expression/activity of FOXA2 and FXR in glucagon or insulin state
The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.
Sex, Specimen part, Treatment
View SamplesIn order to investigate the effects of Glatiramer acetate (GA) in treatment-nave RR-MS female patients B cells we performed Affymetrix Gene-Chip Human Genome HG-U133A_2 hybridization experiments
Glatiramer Acetate modulates ion channels expression and calcium homeostasis in B cell of patients with relapsing-remitting multiple sclerosis.
Sex, Specimen part, Disease, Subject
View SamplesOvarian cancer patients are generally diagnosed at stage III/IV, when ascites is common. The volume of ascites positively correlates with the extent of metastasis and negatively with prognosis. Membrane GRP78, a stress-inducible endoplasmic reticulum chaperone which also appears on the plasma membrane (memGRP78) of aggressive cancers, plays a crucial role in the maintenance of embryonic stem cells. Our present study demonstrates that tumor cells isolated from ascites generated by epithelial ovarian cancer (ID8 cells) bearing mice have increased memGRP78 expression compared to ID8 cells in normal culture. We hypothesize that these ascites associated memGRP78+ cells are cancer stem-like cells (CSC) and memGRP78 is functionally important in CSCs. Supporting this hypothesis, we show that memGRP78+ cells isolated from ascites have increased sphere forming and tumor initiating abilities compared to memGRP78- cells. When the tumor microenvironment is recapitulated by adding ascites fluid to cell culture, ID8 cells express more memGRP78 and increased self-renewing ability compared to those cultured in medium alone. Moreover, compared to their counterparts cultured in normal medium, ID8 cells cultured in ascites, or isolated from ascites, show an increased expression of stem cell markers Sca-1, Snail and SOX9. Importantly, antibodies directed against the carboxy (COOH)-terminal domain of GRP78 significantly reduce the self-renewing ability of murine and human ovarian cancer cells pre-incubated with ascites, associated with a decreased phosphorylation of Akt and GSK3, and reduced level of the transcriptional factor Snail. Based on this data, we suggest that memGRP78 is a logical therapeutic target for late stage ovarian cancer.
Syngeneic Murine Ovarian Cancer Model Reveals That Ascites Enriches for Ovarian Cancer Stem-Like Cells Expressing Membrane GRP78.
Disease
View SamplesAnalysis of MDA-MB-231 breast cancer cells depleted for High Mobility Group A1 (HMGA1) using siRNA. HMGA1 is involved in invasion and metastasis in breast cancer cells. Results identify the specific transcriptional program induced by HMGA1 in highly metastatic breast cancer cells.
HMGA1 promotes metastatic processes in basal-like breast cancer regulating EMT and stemness.
Specimen part, Cell line
View SamplesPre-mRNA splicing is functionally coupled to transcription, and genotoxic stresses can enhance alternative exon inclusion by affecting elongating RNA polymerase II. We report here that various genotoxic stress inducers, including camptothecin, inhibit the interaction between EWS, an RNA polymerase II-associated factor, and YB-1, a spliceosome-associated factor. This results in the cotranscriptional skipping of several exons of the MDM2 gene encoding the main p53 ubiquitin-ligase. This reversible exon skipping participates in the timely regulation of MDM2 expression, and may contribute to the accumulation of p53 during stress exposure and its rapid shut off when stress is removed. Finally, a splicing-sensitive microarray identified numerous exons that are skipped in response to camptothecin and EWS/YB-1 depletion. These data demonstrate genotoxic stress-induced alteration of the communication between the transcriptional and splicing machineries, resulting in widespread exon skipping and playing a central role in the genotoxic stress response.
Cotranscriptional exon skipping in the genotoxic stress response.
Specimen part, Cell line
View Samples[original title] LMP-420: a novel purine nucleoside analogue with potent cytotoxic effects for chronic lymphocytic leukemia cells and minimal toxicity for normal hematopoietic cells.
LMP-420: a novel purine nucleoside analog with potent cytotoxic effects for CLL cells and minimal toxicity for normal hematopoietic cells.
No sample metadata fields
View Samples