refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 214 results
Sort by

Filters

Technology

Platform

accession-icon GSE46449
Expression data from Patients with Bipolar (BP) Disorder and Matched Control Subjects
  • organism-icon Homo sapiens
  • sample-icon 84 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

There are currently no biological tests that differentiate patients with bipolar disorder (BPD) from healthy controls. While there is evidence that peripheral gene expression differences between patients and controls can be utilized as biomarkers for psychiatric illness, it is unclear whether current use or residual effects of antipsychotic and mood stabilizer medication drives much of the differential transcription. We therefore tested whether expression changes in first-episode, never-medicated bipolar patients, can contribute to a biological classifier that is less influenced by medication and could potentially form a practicable biomarker assay for BPD.

Publication Title

Utilization of never-medicated bipolar disorder patients towards development and validation of a peripheral biomarker profile.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18206
Analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulphate and nonanoic acid
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Irritant contact dermatitis (ICD) pathogenesis is not completely understood and the genes participating in the epidermal response towards chemical irritants are only partly known. It is commonly accepted that different irritants have different mechanisms of action in the development of ICD. To define the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies (, 4 and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to sodium lauryl sulphate (SLS) or nonanoic acid (NON). Gene expression analysis using high-density oligonucleotide microarrays revealed essentially different pathway responses h after exposure: NON transiently induced the IL-6 pathway as well as a number of mitogen activated signalling cascades including ERK and growth factor receptor signalling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially expressed while 26 suggested common biomarkers were identified . In conclusion, we bring new insights into two hitherto less well elucidated phases of skin irritancy: the very initial as well as the late phase after single and cumulative exposure, respectively.

Publication Title

Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15101
Extraction of high-quality epidermal RNA after NH4SCN induced dermo-epidermal separation of 4 mm human skin biopsies
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To obtain a separation of the epidermal and dermal compartments in order to examine compartment specific biological mechanisms in the skin we incubated 4 mm human skin punch biopsies in ammonium thiocyanate (NH4SCN). We wanted to test 1) the histological quality of the dermo-epidermal separation obtained by different incubation times 2) the amount and quality of extractable epidermal RNA, and 3) its impact on sample RNA expression profiles assessed by large-scale gene expression microarray analysis in both normal and inflamed skin. At 30 minutes incubation, the split between dermis and epidermis was not always histologically well-defined (i.e. occurred partly intra-epidermally) but varied between subjects. Consequently, curettage along the dermal surface of the biopsy was added to the procedure. This modified method resulted in an almost perfect separation of the epidermal and dermal compartments and satisfactory amounts of high-quality RNA were obtained. Hybridization to Affymetrix HG_U133A 2.0 GeneChips showed that ammonium thiocyanate incubation had a minute effect on gene expression resulting in only one significantly downregulated gene (cystatin E/M). We conclude that epidermis can be reproducibly and almost completely separated from the dermis of 4 mm skin biopsies by 30 min incubation in 3.8% ammonium thiocyanate combined with curettage of the dermal surface, producing high-quality RNA suitable for transcriptional analysis. Our refined method of dermo-epidermal separation will undoubtedly prove valuable in the many different settings, where the epidermal and dermal compartments need to be evaluated separately.

Publication Title

Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP045772
14-3-3? controls adipocyte progenitor cell cycle and differentiation via Gli3-dependent p27Kip expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

14-3-3 proteins facilitate cytoplasmic-nuclear shuttling of transcription factors.Adipocyte differentiation requires the function of critical transcription factors to drive the development of a mature adipocyte. The aim of the study was to investigate if 14-3-3? is required for the adipogenic transcriptional program. Overall design: Examination of the transcriptome in siCon- and si14-3-3?-transfected 3T3-L1 cells undergoing differentiation at t=0, 24, and 48 hours.

Publication Title

14-3-3ζ coordinates adipogenesis of visceral fat.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056013
Analysis of differences in the transcriptome of WAT from Wildtype and 14-3-3zeta knockout mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Due to inherent differences in adipcoyte size between wildtype and knockout animals, we sought to examine if the decrease in adipocyte size was due to differences in the transcriptome and more specifcially, adipogenic genes. Overall design: Examination of the transcriptome in wildtype (WT) and knockout (KO) gonadal white adipose tissue from adult mice

Publication Title

14-3-3ζ coordinates adipogenesis of visceral fat.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7493
Mutant SOD1 rats (lobsi-affy-rat-194438)
  • organism-icon Rattus norvegicus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Missense mutations in the gene for the ubiquitously expressed superoxide dismutase-1 (SOD1) are one of the causes of familial amyotrophic lateral sclerosis (ALS), the most common adult onset motor neuron disease in humans killing selectively large motor neurons. Mice and rats overexpressing mutant SOD1 develop an adult onset neurodegenerative disease with hindlimb-paralysis and subsequent death similar to the human condition. In order to analyze the effects of mutant SOD1 expression onto the most affected cell-type in ALS, a small subpopulation of spinal cord cells, we propose to use laser microdissection to isolate mouse lumbar motor neurons and to assess the changes onto the mRNA expression profile using Affymetrix GeneChips compared to control animals. While two studies applying a genomic approach on the ALS mouse models used the entire spinal cord, contributions of changes to motor neurons were masked by the inflammatory effects of mutant SOD1 and the much larger population of non-motor neuronal cells. What is therefore needed is a cell-type specific expression profile that could reveal dysregulations in the transcriptome of the affected motor neurons.

Publication Title

Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE94314
Cadmium (Cd) induced expression changes in the Arabidopsis thaliana accessions Col-0 and Bur-0
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Metal tolerance is often a result of metal storage or distribution. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, natural variation of metal tolerance in Arabidopsis thaliana was investigated. Substantial variation exists in tolerance of excess copper (Cu), zinc (Zn) and cadmium (Cd). Two accessions, Col-0 and Bur-0, and a recombinant inbred line (RIL) population derived from these parents were chosen for further analysis of Cd and Zn tolerance variation, which is evident at different plant ages in various experimental systems and appears to be genetically linked. Three QTLs, explaining in total nearly 50 % of the variation in Cd tolerance, were mapped. The one obvious candidate gene in the mapped intervals, HMA3, is unlikely to contribute to the variation. In order to identify additional candidate genes the Cd responses of Col-0 and Bur-0 were compared at the transcriptome level. The sustained common Cd response of the two accessions was dominated by processes implicated in plant pathogen defense. Accession-specific differences suggested a more efficient activation of acclimative responses as underlying the higher Cd tolerance of Bur-0. The second hypothesis derived from the physiological characterization of the accessions is a reduced Cd accumulation in Bur-0.

Publication Title

Natural variation in Arabidopsis thaliana Cd responses and the detection of quantitative trait loci affecting Cd tolerance.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE21571
In the absence of H2A.Z, the SWR1 histone replacement complex causes genetic instability, stress and genome transcription misregulation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The SWR1 complex replaces the canonical histone H2A with the variant H2A.Z (Htz1 in yeast) at specific chromatin regions. This dynamic alteration in nucleosome structure provides a molecular mechanism to regulate transcription. Here we analysed the transcription profiles of single and double mutants and wild-type cells by whole-genome microarray analysis. Our results indicate that genome-wide transcriptional misregulation in htz1 can be partially or totally suppressed if SWR1 is not formed (swr1), if it forms but cannot bind to chromatin (swc2), or if it binds to chromatin but has no histone replacement activity (swc5). These results suggest that in htz1 the nucleosome remodelling activity of SWR1 affects chromatin integrity because of an attempt to replace H2A with Htz1 in the absence of the latter.

Publication Title

The SWR1 histone replacement complex causes genetic instability and genome-wide transcription misregulation in the absence of H2A.Z.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24666
Basic helix-loop-helix transcription factor Tcf21 is downstream target of male sex-determining gene SRY
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

The cascade of molecular events involved in mammalian sex determination has been shown to involve the SRY gene, but specific downstream events have eluded researchers for decades. The current study identifies one of the first direct downstream targets of the male sex-determining factor SRY as the basic-helix-loop-helix (bHLH) transcription factor TCF21. SRY was found to directly associate with the Tcf21 promoter SRY/SOX9 response element both in vitro and in vivo during male sex determination. TCF21 was found to promote an in vitro sex reversal of embryonic ovarian cells to promote precursor Sertoli cell differentiation. Therefore, SRY acts directly on the Tcf21 promoter to, in part, initiate a cascade of events associated with Sertoli cell differentiation and embryonic testis development.

Publication Title

Basic helix-loop-helix transcription factor TCF21 is a downstream target of the male sex determining gene SRY.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE10558
Regulation of the gonadal transcriptome during sex determination and testis morphogenesis: comparative candidate genes
  • organism-icon Rattus norvegicus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

Embryonic day 13 (E13), E14, and E16 rat testes and ovaries were used for microarray analysis, as well as E13 testis organ cultures that undergo testis morphogenesis and develop seminiferous cords in vitro. A list of 109 genes resulted from a selective analysis for genes present in male gonadal development and with a 1.5-fold change in expression between E13 and E16. Characterization of these 109 genes potentially important for testis development revealed that cytoskeletal-associated proteins, extracellular matrix factors, and signaling factors were highly represented. Throughout the developmental period (E13-E16), sex-enriched transcripts were more prevalent in the male with 34 of the 109 genes having testis-enriched expression during sex determination. In ovaries, the total number of transcripts with a 1.5-fold change in expression between E13 and E16 was similar to the testis, but none of those genes were both ovary enriched and regulated during the developmental period. Genes conserved in sex determination were identified by comparing changing transcripts in the rat analysis herein, to transcripts altered in previously published mouse studies of gonadal sex determination. A comparison of changing mouse and rat transcripts identified 43 genes with species conservation in sex determination and testis development. Profiles of gene expression during E13-E16 rat testis and ovary development are presented and candidate genes for involvement in sex determination and testis differentiation are identified. Analysis of cellular pathways did not reveal any specific pathways involving multiple candidate genes. However, the genes and gene network identified influence numerous cellular processes with cellular differentiation, proliferation, focal contact, RNA localization, and development being predominant.

Publication Title

Regulation of the gonadal transcriptome during sex determination and testis morphogenesis: comparative candidate genes.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact