Salt Stress response of salt-tolerant genotype FL478 compared to IR29
Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress.
Specimen part
View SamplesSalt Stress response of salt-tolerant genotype Golden Promise compared to Maythorpe
Array-based genotyping and expression analysis of barley cv. Maythorpe and Golden Promise.
No sample metadata fields
View SamplesDetection of single feature polymorphisms comparing five barley genotypes. Gene expression under unstressed and drought stressed conditions.
Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit.
No sample metadata fields
View SamplesGene expression was measured from the dentate gyrus and entorhinal cortex harvested from human postmortem samples.
Molecular mechanism for age-related memory loss: the histone-binding protein RbAp48.
Age, Specimen part, Subject
View SamplesAnalysis of root gene expression of salt-tolerant genotypes FL478, Pokkali and IR63731, and salt-sensitive genotype IR29 under control and salinity-stressed conditions during vegetative growth. Results provide insight into the genetic basis of salt tolerance in indica rice.
Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress.
No sample metadata fields
View SamplesStudy of the gene expression of T24 bladder cancer cells in response to hypericin-mediated photodynamic therapy in the absence or presence of the p38 MAPK inhibitor PD169316
Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells.
Specimen part, Cell line, Compound
View SamplesThis study was conducted to evaluate the efficiency of cross-species detection in Barley1 GeneChip array. We hybridized cRNA derived from first leaves of barley green seedlings (as a control), as well as the same stage of seedling leaf from representative genotypes of wheat, oat, rice, maize, and sorghum. Ten to twenty seedlings for each species were harvested and pooled for RNA preparation, labeling, and hybridization. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Rico Caldo. The equivalent experiment is BB1 at PLEXdb.]
A new resource for cereal genomics: 22K barley GeneChip comes of age.
Specimen part
View SamplesAlternative mRNA splicing is the main reason vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription and the rate of transcript elongation has a profound effect on splicing. As the nascent pre-mRNA emerges from transcribing RNA polymerase II (RNAPII), it is assembled into a messenger ribonucleoprotein (mRNP) particle that represents its functional form, and the composition of which determines the fate of the mature transcript4. However, factors that connect the transcribing polymerase with the mRNP particle and help integrate transcript elongation with mRNA splicing remain obscure. Here, we characterized the interactome of chromatin-associated mRNP particles and thereby identified Deleted in Breast Cancer 1 (DBC1) and a protein we named ZIRD. These proteins are subunits of a novel protein complex, named DBIRD, which binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in A/T-rich DNA, and is present at the affected exons. RNAi-mediated DBIRD depletion results in region-specific decreases in transcript elongation, particularly across areas encompassing affected exons. These data indicate that DBIRD complex acts at the interface between mRNP particles and RNAPII, integrating transcript elongation with regulation of alternative splicing.
DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation.
Cell line
View SamplesPlant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley grain maturation, desiccation and germination in two tissue fractions (endosperm/aleurone = e/a and embryo = em) using the Affymetrix barley1 chip.
Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools.
No sample metadata fields
View SamplesMalting is seed germination under strictly controlled environmental conditions. Malting quality is a complex phenotype that combines a large number of interrelated components, each of which shows complex inheritance. Currently, only a few genes involved in determining malting quality have been characterized. This study combined transcript profiling with phenotypic correlations to identify candidate genes for malting quality.
Differentially expressed genes during malting and correlation with malting quality phenotypes in barley (Hordeum vulgare L.).
No sample metadata fields
View Samples