PMID: 15539473. We compared the gene expression in roots between WT and fit mutant under +Fe and -Fe conditions using ATH1 microarray analysis to explore which genes are affected by the loss of FIT function.
The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response.
Specimen part, Treatment
View SamplesThe healthspan of mice is enhanced by selectively killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and burden of age-related chronic diseases.
The Achilles' heel of senescent cells: from transcriptome to senolytic drugs.
Specimen part, Subject
View SamplesThe homeobox containing gene Arx is expressed during ventral telencephalon development and it is required for correct GABAergic interneuron tangential migration from the ganglionic eminences to the olfactory bulbs, cerebral cortex and striatum. Its human ortholog is associated with a variety of neurological clinical manifestations whose syntoms are compatible with a loss of cortical interneurons and altered basal ganglia related-activities in humans. Herein, we reported the identification by global expression profiling of a group of genes whose expression is consistently altered in Arx mutant ganglionic eminences. Following analysis revealed the striking ectopic expression in the ganglionic eminences of a number of genes normally not, or only marginally, expressed in the ventral telencephalon. Among them, we functionally analyzed Ebf3, whose ectopic expression in ventral telencephalon is preventingneuronal tangential migration. Further, we showed that Arx is sufficient to repress Ebf3 endogenous expression and that its silencing in Arx mutant tissue might marginally rescue tangential cell movements. Together, these data provide an initial analysis of the molecular pathways regulated by Arx and how their networking might regulate those specific cellular processes during telencephalon development strongly altered by loss of Arx.
Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity.
No sample metadata fields
View SamplesAging is often associated with cognitive decline, but many elderly individuals maintain a high level of function throughout life. Here we studied outbred rats, which also exhibit individual differences across a spectrum of outcomes that includes both preserved and impaired spatial memory. Previous work in this model identified the CA3 subfield of the hippocampus as a region critically affected by age and integral to differing cognitive outcomes. Earlier microarray profiling revealed distinct gene expression profiles in the CA3 region, under basal conditions, for aged rats with intact memory and those with impairment. Because prominent age-related deficits within the CA3 occur during neural encoding of new information, here we used microarray analysis to gain a broad perspective of the aged CA3 transcriptome under activated conditions. Behaviorally induced CA3 expression profiles differentiated aged rats with intact memory from those with impaired memory. In the activated profile, we observed substantial numbers of genes (greater than 1000) exhibiting increased expression in aged unimpaired rats relative to aged impaired, including many involved in synaptic plasticity and memory mechanisms. This unimpaired aged profile also overlapped significantly with a learning induced gene profile previously acquired in young adults. Alongside the increased transcripts common to both young learning and aged rats with preserved memory, many transcripts behaviorally-activated in the current study had previously been identified as repressed in the aged unimpaired phenotype in basal expression. A further distinct feature of the activated profile of aged rats with intact memory is the increased expression of an ensemble of genes involved in inhibitory synapse function, which could control the phenotype of neural hyperexcitability found in the CA3 region of aged impaired rats. These data support the conclusion that aged subjects with preserved memory recruit adaptive mechanisms to retain tight control over excitability under both basal and activated conditions.
Behaviorally activated mRNA expression profiles produce signatures of learning and enhanced inhibition in aged rats with preserved memory.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Rapid encoding of new information alters the profile of plasticity-related mRNA transcripts in the hippocampal CA3 region.
No sample metadata fields
View SamplesA theoretical framework for the function of the medial temporal lobe system in memory defines differential contributions of the hippocampal subregions with regard to pattern recognition retrieval processes and encoding of new information. To investigate molecular programs of relevance, we designed a spatial learning protocol to engage a pattern separation function to encode new information. After background training, two groups of animals experienced the same new training in a novel environment, however only one group was provided spatial information and demonstrated spatial memory in a retention test. Global transcriptional analysis of the microdissected subregions of the hippocampus exposed a CA3 pattern that was sufficient to clearly segregate spatial learning animals from control. Individual gene and functional group analysis anchored these results to previous work in neural plasticity. From a multitude of expression changes, increases in camk2a, rasgrp1 and nlgn1 were confirmed by in situ hybridization. Furthermore, siRNA inhibition of nlgn1 within the CA3 subregion impaired spatial memory performance, pointing to mechanisms of synaptic remodeling as a basis for rapid encoding of new information in long-term memory.
Rapid encoding of new information alters the profile of plasticity-related mRNA transcripts in the hippocampal CA3 region.
No sample metadata fields
View SamplesA theoretical framework for the function of the medial temporal lobe system in memory defines differential contributions of the hippocampal subregions with regard to pattern recognition retrieval processes and encoding of new information. To investigate molecular programs of relevance, we designed a spatial learning protocol to engage a pattern separation function to encode new information. After background training, two groups of animals experienced the same new training in a novel environment, however only one group was provided spatial information and demonstrated spatial memory in a retention test. Global transcriptional analysis of the microdissected subregions of the hippocampus exposed a CA3 pattern that was sufficient to clearly segregate spatial learning animals from control. Individual gene and functional group analysis anchored these results to previous work in neural plasticity. From a multitude of expression changes, increases in camk2a, rasgrp1 and nlgn1 were confirmed by in situ hybridization. Furthermore, siRNA inhibition of nlgn1 within the CA3 subregion impaired spatial memory performance, pointing to mechanisms of synaptic remodeling as a basis for rapid encoding of new information in long-term memory.
Rapid encoding of new information alters the profile of plasticity-related mRNA transcripts in the hippocampal CA3 region.
No sample metadata fields
View SamplesA theoretical framework for the function of the medial temporal lobe system in memory defines differential contributions of the hippocampal subregions with regard to pattern recognition retrieval processes and encoding of new information. To investigate molecular programs of relevance, we designed a spatial learning protocol to engage a pattern separation function to encode new information. After background training, two groups of animals experienced the same new training in a novel environment, however only one group was provided spatial information and demonstrated spatial memory in a retention test. Global transcriptional analysis of the microdissected subregions of the hippocampus exposed a CA3 pattern that was sufficient to clearly segregate spatial learning animals from control. Individual gene and functional group analysis anchored these results to previous work in neural plasticity. From a multitude of expression changes, increases in camk2a, rasgrp1 and nlgn1 were confirmed by in situ hybridization. Furthermore, siRNA inhibition of nlgn1 within the CA3 subregion impaired spatial memory performance, pointing to mechanisms of synaptic remodeling as a basis for rapid encoding of new information in long-term memory.
Rapid encoding of new information alters the profile of plasticity-related mRNA transcripts in the hippocampal CA3 region.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Prominent hippocampal CA3 gene expression profile in neurocognitive aging.
No sample metadata fields
View SamplesFunctional alterations in medial temporal lobe structures, particularly the hippocampus, are central to age-related deficits in episodic memory. Research in aging laboratory animals has characterized physiological and cellular alterations in the hippocampus that occur in association with the presence and severity of such cognitive impairment. The current study compares alterations across hippocampal subregions by gene expression profiling in a rat model that closely mirrors individual differences in neurocognitive features of aging humans across a spectrum of outcomes, including both impaired memory and preserved function. Using mRNA profiling of the CA1, CA3 and dentate gyrus subregions, we have distinguished between gene groups and pathways related to chronological age and those specifically associated with impaired or preserved cognitive ability in aged rats. We confirmed earlier reported changes in gene groups related to inflammation and oxidative stress in multiple subregions and found these to be more associated with chronological age than cognitive function per se. The CA3 profile was best able to segregate aged impaired, aged unimpaired and young subject groups from each other. Characterization of gene changes that distinguished preserved from impaired function among the aged animals found altered expression of synaptic plasticity and neurodegenerative disease-related genes. Together these gene changes suggest recruitment of adaptive mechanisms that mediate synaptic plasticity to maintain function and structural integrity in aged unimpaired rats that does not occur in aged impaired animals.
Prominent hippocampal CA3 gene expression profile in neurocognitive aging.
No sample metadata fields
View Samples