Endothelial cells (EC) lining arteries and veins have distinct molecular and functional signatures. The (epi)genetic regulatory mechanisms underlying this heterogeneity in human EC are incompletely understood. Using genome-wide microarray screening we established a specific fingerprint of freshly isolated arterial (HUAEC) and venous EC (HUVEC) from human umbilical cord comprising 64 arterial and 12 venous genes, representing distinct functions and pathways. Among the arterial genes were 8 transcription factors, including HEY2, a downstream target of Notch signaling and the current golden standard pathway for arterial EC specification. Short-term culture of HUAEC or HUVEC abrogated differential gene expression resulting in a default state. Erasure of arterial gene expression was at least in part due to loss of canonical Notch activity and HEY2 expression. Notably, nCounter analysis revealed that restoring HEY2 expression or Delta-like 4 (Dll4)-induced Notch signaling in cultured HUVEC or HUAEC only partially reinstated the arterial EC gene signature while combined overexpression of the 8 transcription factors restored this fingerprint much more robustly. Each transcription factor had a different impact on gene regulation, with some stimulating only few and others boosting a large proportion of arterial genes. Interestingly, although there was some overlap and cross-regulation, the transcription factors largely complemented each other in regulating the arterial EC gene profile. Thus, our study showed that Notch signaling determines only part of the arterial EC signature and identified additional novel and complementary transcriptional players in the complex regulation of human arteriovenous EC identity
Unraveling a novel transcription factor code determining the human arterial-specific endothelial cell signature.
Specimen part
View SamplesThe goal of this study was to gain insight into the molecular heterogeneity of capillary endothelial cells derived from different organs by microarray profiling of freshly isolated cells and identify transcription factors that may determine the specific gene expression profile of endothelial cells from different tissues. The study focused on heart endothelial cells and presents a validated signature of 31 genes that are highly enriched in heart endothelial cells. Within this signature 5 transcription factors were identified and the optimal combination of these transcription factors was determined for specification of the heart endothelial fingerprint.
Meox2/Tcf15 heterodimers program the heart capillary endothelium for cardiac fatty acid uptake.
Sex, Specimen part
View SamplesHfe disruption in the mouse leads to experimental hemochromatosis by a mechanism which remains elusive. Evidence for at least five modifier genes has been obtained. These account for the higher iron load of Hfe-deficient D2 mice compared to B6 mice. Gene expression profling was used to clarify the mechanism of Hfe action and to identify potential modifier genes.
Gene expression profiling of Hfe-/- liver and duodenum in mouse strains with differing susceptibilities to iron loading: identification of transcriptional regulatory targets of Hfe and potential hemochromatosis modifiers.
No sample metadata fields
View SamplesHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesHuman myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where pluripotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. The genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Motif discovery in promoters of genes co-localized and co-expressed during myeloid cells differentiation.
No sample metadata fields
View SamplesDrought is an important environmental factor affecting plant growth and biomass production. Despite this importance little is known on the molecular mechanisms regulating plant growth under water limiting conditions. The main goal of this work was to investigate, using a combination of growth and molecular profiling techniques, how stress arrests CELl proliferation in Arabidopsis thaliana leaves upon osmotic stress imposition.
Pause-and-stop: the effects of osmotic stress on cell proliferation during early leaf development in Arabidopsis and a role for ethylene signaling in cell cycle arrest.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Inactivating hepatic follistatin alleviates hyperglycemia.
Sex, Specimen part
View SamplesWe compared RNA expression profiles of wild type of mice maintained on high fat diet or Irs1/2:foxo1-LTKO mice infected with Fst288 AAV-TBG virus
Inactivating hepatic follistatin alleviates hyperglycemia.
Sex, Specimen part
View SamplesWe compared RNA expression profiles of eWAT obtained from Cntr- and LDKO-mice, and Cntr3- and LTKO-mice.
Inactivating hepatic follistatin alleviates hyperglycemia.
Sex, Specimen part
View SamplesDiet-induced obesity is characterized by macrophage (MF) infiltration and low-grade chronic inflammation in white adipose tissue (WAT) leading to insulin resistance. WAT MF are highly heterogeneous in their origin, patterns of gene expression and activities: unlike infiltrating monocyte-derived MF that promote inflammation and metabolic dysfunction, tissue-resident WAT MF originally described as ‘M2’ are phenotypically anti-inflammatory and counteract obesity and insulin resistance. Despite the critical role of the balance between these MF populations in metabolic homeostasis, the molecular mechanisms and key players that establish the resident MF transcription program are poorly understood. We recently reported that glucocorticoid receptor (GR)-interacting protein (GRIP)1 - a nuclear receptor coactivator - cooperates with GR to repress transcription of inflammatory genes. Here, using mice conditionally lacking GRIP1 in MF (cKO), we show that GRIP1 promotes MF polarization in response to IL4 (M2(IL4)) via a nuclear receptor-independent pathway by serving as a coactivator for Kruppel-like factor (KLF)4 – a critical driver of tissue MF differentiation. Interestingly, in vivo, GRIP1 cKO mice challenged with high-fat diet develop massive MF infiltration and chronic inflammation in WAT and liver, fatty livers, hyperglycemia, hyperinsulinemia and glucose intolerance consistent with metabolic syndrome phenotype. Together, our findings identify GRIP1 as a critical regulator of immunometabolism, which relies on distinct transcriptional mechanisms to coordinate the balance between MF populations in vivo thereby protecting mice from obesity-induced metabolic disease. Overall design: 1. Examination of IL4 induced transcriptome in in vitro differentiated primary bone marrow-derived macrophages. 2. Examination of macrophage transcriptome in macrophages isolated from the white adipose tissue of the WT and GRIP1(cKO) conditional KO animals
The transcriptional coregulator GRIP1 controls macrophage polarization and metabolic homeostasis.
Sex, Age, Specimen part, Subject
View Samples