Here, we apply differential transcriptome analysis on microscopically isolated cell populations, to define five transcriptional programs that represent each transient embryonic zone and the progression between these zones. The five transcriptional programs contain largely uncharacterized genes in addition to transcripts necessary for stem cell maintenance, neurogenesis, migration, and differentiation. Additionally, we found intergenic transcriptionally active regions that possibly encode novel zone-specific transcripts. Finally, we present a high-resolution transcriptome map of transient zones in the embryonic mouse forebrain. Overall design: mRNAseq performed after laser microdissection of cells from transient embryonic zones in the mouse cortex
Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing.
Specimen part, Cell line, Subject
View SamplesRecent genetic studies of ALS patients have identified several forms of ALS that are associated with mutations in RNA binding proteins. In animals or cultured cells, such defects broadly affect RNA metabolism. This raises the question of whether all forms of ALS have general effects on RNA metabolism. We tested this hypothesis in a mouse model of ALS that is transgenic for a human disease-causing mutation in the enzyme superoxide dismutase 1 (SOD1). We analyzed RNA from laser-captured spinal cord motor neuron cell bodies of the mutant SOD1 strain, comparing the RNA profile with that from a corresponding wild-type SOD1 transgenic strain. We prepared the samples from animals that were presymptomatic, but which manifested abnormalities at the cellular level that are seen in ALS, including aggregation of the mutant protein in motor neuron cell bodies and defective morphology of neuromuscular junctions, the connections between neuron and muscle. We observed only minor changes in the level and splicing of RNA in the SOD1 mutant animals as compared with wild-type, suggesting that mutant SOD1 produces the toxic effects of ALS by a mechanism that does not involve global RNA disturbance. Overall design: RNA-Seq of laser microdissection of motor neuron bodies from two biological replicates each of SOD1 YFP (wildtype 592) and SOD1 G85R YFP (737) transgenic mice.
RNA-Seq profiling of spinal cord motor neurons from a presymptomatic SOD1 ALS mouse.
Age, Specimen part, Cell line, Subject
View SamplesThis dataset investigates the transcriptional effect of mitochondrial 12S rRNA hypermethylation, both by overexpressing the mitochondrial methyltransferase mtTFB1 in HeLa cells and by using A1555G cybrids, where the 12S rRNA is hypermethylated. HeLa cells overexpressing a methyltransferase-deficient mtTFB1 (mtTFB1[G65A]) and wild-type A1555A cybrids were used as controls.
Mitochondrial stress engages E2F1 apoptotic signaling to cause deafness.
Cell line
View SamplesWe report genomic analysis of 300 meningiomas, the most common primary brain tumors, leading to the discovery of mutations in TRAF7, a proapoptotic E3 ubiquitin ligase, in nearly one-fourth of all meningiomas. Mutations in TRAF7 commonly occurred with a recurrent mutation (K409Q) in KLF4, a transcription factor known for its role in inducing pluripotency, or with AKT1(E17K), a mutation known to activate the PI3K pathway. SMO mutations, which activate Hedgehog signaling, were identified in ~5% of non-NF2 mutant meningiomas. These non-NF2 meningiomas were clinically distinctive-nearly always benign, with chromosomal stability, and originating from the medial skull base. In contrast, meningiomas with mutant NF2 and/or chromosome 22 loss were more likely to be atypical, showing genomic instability, and localizing to the cerebral and cerebellar hemispheres. Collectively, these findings identify distinct meningioma subtypes, suggesting avenues for targeted therapeutics.
Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO.
Disease stage
View SamplesMouse keratinocytes were isolated from K15-EGFP transgenic mice for FACS sorting. RNA samples from EGFP-high and alpha-6 integrin positive cells (hair follicle stem cells) and from EGFP negative and alpha-6 integrin positive cells were used for Microarray analysis.
Capturing and profiling adult hair follicle stem cells.
No sample metadata fields
View SamplesAnalysis of root gene expression of salt-tolerant genotypes FL478, Pokkali and IR63731, and salt-sensitive genotype IR29 under control and salinity-stressed conditions during vegetative growth. Results provide insight into the genetic basis of salt tolerance in indica rice.
Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress.
No sample metadata fields
View SamplesAndrogenetic alopecia (AGA) or common baldness results from a marked decrease in hair follicle size. This miniaturization may be related to loss of hair follicle stem or progenitor cells. To test this hypothesis, we analyzed bald and non-bald scalp from the same individuals for the presence of hair follicle stem and progenitor cells using flow cytometry to quantitate cells expressing CYTOKERATIN 15 (KRT15), CD200, CD34 and ALPHA-6-INTEGRIN (ITGA6). High levels of KRT15 expression correlated with stem cell properties of small cell size and quiescence. Cells with the highest level of KRT15 expression were maintained in bald scalp; however, distinct populations of CD200high ITGA6high cells and CD34-positive cells were markedly diminished. Consistent with a progenitor cell phenotype, the diminished populations localized closely to the stem-cell rich bulge area but were larger and more proliferative than the bulge stem cells. In functional assays, analogous CD200 high /Itga6 high cells from murine hair follicles were multipotent and generated new hair follicles in skin reconstitution assays. These findings suggest that a defect in stem cell activation plays a role in the pathogenesis of AGA.
Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells.
Sex, Age, Specimen part
View SamplesMouse back skin was disassociated to single cells, sorted by cell surface markers and tested by microarrray
Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells.
Sex, Age, Specimen part
View SamplesHuman hair follicles from normal areas of the scalp were disassociated to single cells, sorted and tested by microarrray
Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks CD200-rich and CD34-positive hair follicle progenitor cells.
Sex, Specimen part
View SamplesCD133 is expressed by a subpopulation of human fetal hair follicle placode cells during early hair development. Its expression, which is gradually lost as the placode matures, correlates with early morphogenesis.
CD133 expression correlates with membrane beta-catenin and E-cadherin loss from human hair follicle placodes during morphogenesis.
Age, Specimen part
View Samples