refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 218 results
Sort by

Filters

Technology

Platform

accession-icon GSE48558
Expression data from normal and Malignant hematopoietic cells
  • organism-icon Homo sapiens
  • sample-icon 170 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This data was used to determine levels of BRCA1 and BRCA2 in primary human leukemia samples. Samples were determined to be high BRCA1 and/or BRCA2 or low BRCA1 and/or BRAC2.

Publication Title

Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47927
Comparing gene expression in stem/progenitor cells from patients with CML in chronic, accelerated and blastic phase with normal volunteers
  • organism-icon Homo sapiens
  • sample-icon 67 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

A comparison of global gene expression between rigorously defined stem and progenitor cells from patients with chronic myeloid leukaemia (CML) in chronic (CP), accelerated (AP) and blastic (BC) phase and similar populations isolated from normal volunteers.

Publication Title

Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE31660
Gene expression associated with compatible viral diseases in berry
  • organism-icon Vitis vinifera
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

To understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.

Publication Title

Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE56525
Distinct human stem cell populations in small and large intestine
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The intestine is composed of an epithelial layer, containing rapidly proliferating cells that mature into two distinct anatomic regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for the whole intestine, no studies have compared stem cells derived from the small and large intestine. Here, we report intrinsic differences between these two populations of cells. Primary epithelial cells isolated from human fetal small and large intestine and expanded with Wnt agonist, R-spondin 2, displayed differential expression of stem cell markers and separate hierarchical clustering of gene expression involved in differentiation, proliferation and disease pathways. Using a three-dimensional in vitro differentiation assay, single cells derived from small and large intestine formed distinct organoid architecture with cellular hierarchy similar to that found in primary tissue. Our characterization of human fetal intestinal stem cells defies the classical definition proposed by most where small and large intestine are repopulated by an identical epithelial stem cell and raises the question of the importance of intrinsic and extrinsic cues in the development of intestinal diseases.

Publication Title

Distinct human stem cell populations in small and large intestine.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE84000
Specific metabolic activation of adipose tissue macrophages during obesity promotes inflammatory responses
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Recent studies have identified intracellular metabolism as a fundamental determinant of macrophage function. In obesity, proinflammatory macrophages accumulate in adipose tissue and trigger chronic low-grade inflammation, that promotes the development of systemic insulin resistance, yet changes in their intracellular energy metabolism are currently unknown. We therefore set out to study metabolic signatures of adipose tissue macrophages (ATMs) in lean and obese conditions. F4/80-positive ATMs were isolated from obese vs lean mice. High-fat feeding of wild-type mice and myeloid-specific Hif1-/- mice was used to examine the role of hypoxia-inducible factor-1 (HIF-1) in ATMs part of obese adipose tissue. In vitro, bone marrow-derived macrophages were co-cultured with adipose tissue explants to examine adipose tissue-induced changes in macrophage phenotypes. Transcriptome analysis, real-time flux measurements, ELISA and several other approaches were used to determine the metabolic signatures and inflammatory status of macrophages. In addition, various metabolic routes were inhibited to determine their relevance for cytokine production. Transcriptome analysis and extracellular flux measurements of mouse ATMs revealed unique metabolic rewiring in obesity characterised by both increased glycolysis and oxidative phosphorylation. Similar metabolic activation of CD14+ cells in obese individuals was associated with diabetes outcome. These changes were not observed in peritoneal macrophages from obese vs lean mice and did not resemble metabolic rewiring in M1-primed macrophages. Instead, metabolic activation of macrophages was dose-dependently induced by a set of adipose tissue-derived factors that could not be reduced to leptin or lactate. Using metabolic inhibitors, we identified various metabolic routes, including fatty acid oxidation, glycolysis and glutaminolysis, that contributed to cytokine release by ATMs in lean adipose tissue. Glycolysis appeared to be the main contributor to the proinflammatory trait of macrophages in obese adipose tissue. HIF-1, a key regulator of glycolysis, nonetheless appeared to play no critical role in proinflammatory activation of ATMs during early stages of obesity. Our results reveal unique metabolic activation of ATMs in obesity that promotes inflammatory cytokine release. Further understanding of metabolic programming in ATMs will most likely lead to novel therapeutic targets to curtail inflammatory responses in obesity.

Publication Title

Unique metabolic activation of adipose tissue macrophages in obesity promotes inflammatory responses.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE29948
Expression data from 35S::VvCBF4-overexpressing grapevines
  • organism-icon Vitis vinifera
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

Overexpression of a grapevine C-repeat binding factor (CBF) gene, VvCBF4 in cv. Freedom was found to improve freezing survival in non-cold-acclimated vines.

Publication Title

The Vitis vinifera C-repeat binding protein 4 (VvCBF4) transcriptional factor enhances freezing tolerance in wine grape.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE41423
Transcriptomic analysis during heat stress and after the following recovery in grapevine (Vitis vinifera L.) leaves
  • organism-icon Vitis vinifera
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

To elucidate the effect of heat stress and the following recovery on grapevines and identify some regulated genes representing the classical heat stress response and thermotolerance mechanisms, transcript abundance of grapevine (Vitis vinifera L.) were quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts), followed by quantitive Real-Time PCR validation for some transcript profiles. The treatment: heat stress(5h) and the following recovery (18.5h), sampling were conducted at two time respectively. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Lijun Wang. The equivalent experiment is VV40 at PLEXdb.]

Publication Title

Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66913
Grape_Bud_Dormancy
  • organism-icon Vitis riparia, Vitis hybrid cultivar
  • sample-icon 167 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

Bud endodormancy induction response of two genotypes (Seyval a hybrid white wine grape and V. riparia, PI588259 a native north american species) was compared under long and short photoperiod. Three separate replicates (5 plants/replicate) were treated in each of 2 separate years (2007 and 2008) to generate paradormant (LD) and same aged endodormancy-induced (SD) buds for transcriptomic, proteomic and metabolomic analysis. Potted, spur-pruned two to six-year-old vines were removed from cold storage (Seyval 3-19-07, 3/18/08; V. riparia 3/26/07, 3/24/08) and grown under a LD (15 h) at 25/20 + 3C day/night temperatures (D/N). When vines reached 12-15 nodes they were randomized into groups for differential photoperiod treatments. On 4/30/07 and 4/28/08 LD and SD (13 h) treatments were imposed with automated photoperiod system (VRE Greenhouse Systems). Temperatures were maintained at 25/20 + 3C D/N. Three replications (5 vines/replication) were harvested between 5/07-6/07 and then again in 5/08-6/08. At 1, 3, 7, 14, 21, 28 and 42 days of differential photoperiod treatment, buds were harvested from nodes 3 to 12 (from the base of the shoot) of each separate replicate, immediately frozen in liquid nitrogen, and placed at -80C for future RNA, protein and metabolite extraction. These time points encompass early reversible phases as well as key time points during transition to irreversible endodormancy development. After photoperiod treatments and bud harvests, all pruned vines were returned to LD and monitored for bud endodormancy. The endodormant vines were identified after 28 days and moved to cold storage. The nondormant vines were allowed to grow again and induced into dormancy at a later date. Acknowledgement:This study was funded by NSF Grant DBI0604755 and funds from the South Dakota Agriculture Experiment Station. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Anne Fennell. The equivalent experiment is VV18 at PLEXdb.]

Publication Title

Short day transcriptomic programming during induction of dormancy in grapevine.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE18993
Expression profiles from mouse prostate progenitor/stem cells treated with ethanol or 100nM 1,25 dihydroxyvitamin D3
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A major goal in prostate stem cell biology is to identify genes, pathways, or networks that control self-renewal and multilineage differentiation. We hypothesize that 1,25 dihydroxyvitamin D3 can induce differentiation of prostatic progenitor/stem cells, thus serving as an in vitro model with which to study the molecular mechanisms of stem cell differentiation by 1,25 dihydroxyvitamin D3. 1,25 dihydroxyvitamin D3 elicits its effects primarily through transcriptional regulation of genes, so microarray studies were used to gain insight into the cellular response to 1,25 dihydroxyvitamin D3.

Publication Title

Interleukin-1α mediates the antiproliferative effects of 1,25-dihydroxyvitamin D3 in prostate progenitor/stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE37709
HIF1alpha drives early induction of pluripotency through reprogramming of glycolytic metabolism
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

Gene expression analyis of two neonatal fibroblasts (BJ and HFF1), one adult dermal fibroblasts (NFH2), two BJ-derived human iPSCs (iB4 and iB5), two HFF1-derived iPSCs (iPS 2 and iPS4), four NFH2-derived iPSCs (OiPS3, OiPS6, OiPS8, OiPS16), one amniotic fluid cells and three derived iPSCs (lines 4, 5, 6, 10, and 41), two human ES cells (H1 and H9), neonatal fibroblasts transduced with the four retroviral factors (OKSM) after 24h, 48h, and 72h, neonatal fibroblasts treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts transduced with four factors and treated with EDHB for 24h, 48h, and 72h, neonatal fibroblasts knocked down for HIF1A (HIF1-KD) and for a scrambled sequence (SCR-KD)

Publication Title

HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1-3 and PKM2.

Sample Metadata Fields

Age, Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact