The murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, B. burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN responsive genes was observed in severely arthritic C3H mice at one week of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, as C57BL/6-IL10-/- mice infected with B. burgdorferi develop more severe arthritis that C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at two and four weeks post infection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.
Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis.
No sample metadata fields
View SamplesAlthough corticosteroids remain a mainstay of therapy for UC, a meta-regression of cohort studies in acute severe ulcerative colitis (UC) showed that 29% of patients fail corticosteroid therapy and require escalation of medical management or colectomy.
Gene expression changes associated with resistance to intravenous corticosteroid therapy in children with severe ulcerative colitis.
Specimen part
View SamplesGene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi
Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.
Specimen part
View SamplesDiseases involving the distal lung alveolar epithelium include chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF) and lung adenocarcinoma. Accurate labeling of specific cell types is critical for determining the contribution of each to pathogenesis of these diseases. The distal lung alveolar epithelium is comprised of two cell types, alveolar epithelial type 1 (AT1) and type 2 (AT2) cells. While cell type-specific markers, most prominently surfactant protein C (SFTPC), have allowed detailed studies of AT2 cell differentiation and their roles in disease, studies of AT1 cells have been hampered by lack of genes with expression unique to AT1 cells. To address this, we performed genome-wide expression profiling of multiple rat organs alongside purified rat AT2, AT1 and in vitro differentiated AT1-like cells, resulting in identification of 54 candidate AT1 cell markers. Cross-referencing with genes upregulated in human in vitro differentiated AT1-like cells narrowed the potential list to 18 candidate genes. Testing the top four candidate genes at RNA and protein levels revealed GRAM domain 2 (GRAMD2), a protein of unknown function, as unique to AT1 cells, while SCNN1G within lung is restricted to AT1 cells. RNAseq confirmed that GRAMD2 is transcriptionally silent in human AT2 cells. Immunofluorescence of mouse alveoli verified that GRAMD2 expression is restricted to the plasma membrane of AT1 cells. These new AT1 cell-specific genes, with GRAMD2 as a leading candidate, will enhance AT1 cell isolation, investigation of alveolar epithelial cell differentiation potential, and contribution of AT1 cells to distal lung diseases. Overall design: RNAseq of purified primary human alveolar epithelial type 2 (AT2) and in vitro differentiated type 1 (AT1-like) cells.
Cross-Species Transcriptome Profiling Identifies New Alveolar Epithelial Type I Cell-Specific Genes.
No sample metadata fields
View SamplesWe report ileal gene expression at diagnosis in a cohort of 210 treatment-naïve patients of pediatric Crohn''s disease and 35 non-IBD controls from the RISK study. After three years of follow-up after diagnosis, 27 of the CD patients progressed to complicated disease (B2 and/or B3). We aim to test whether Transcriptional Risk Scores helps to distinguish between patient subgroups, improving the predictive power gained from Genetic Risk Scores. Overall design: Ileal biopsies were obtained during diagnostic colonoscopies of children and adolescents (<17 years) who presented with symptoms of IBD. Non-IBD control label corresponds to those with suspected IBD, but without inflammation and normal endoscopic findings. Biopsies were stored at -80 degrees.
Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn's disease.
No sample metadata fields
View SamplesObjective: Long non-coding RNAs (lncRNA) regulate gene transcription and diverse cellular functions. We previously defined a novel core inflammatory and metabolic ileal gene signature in treatment naïve pediatric Crohn Disease (CD), however, genome-wide characterization of lncRNA expression was lacking. We now extend our analyses to define a more comprehensive view that includes lncRNA. Design: Using RNAseq, we performed a systematic profiling of lncRNAs and protein-coding genes expression in 177 ileal biopsies. Co-expression analysis was used to identify functions and tissue-specific expression. RT-PCR was used to test lncRNAs regulation by IL-1ß in Caco-2 enterocytes model. Results: We characterize a widespread dysregulation of 459 lncRNA in the ileum of treatment naïve pediatric CD patients. Unsupervised and supervised classifications using the 459 lncRNA showed comparable patients' grouping as the 2160 dysregulated protein-coding genes, linking lncRNA to CD pathogenesis. Co-expression and functional annotation enrichment analyses across several tissues and cell types showed that the up-regulated LINC01272 is associated with a myeloid pro-inflammatory signature while the down-regulated HNF4A-AS1 exhibits association with an epithelial metabolic signature. We further validated expression and regulation of prioritized lncRNA upon IL-1ß exposure in differentiated Caco-2 cells. Finally, we identified significant correlations between LINC01272 and HNF4A-AS1 expression and more severe mucosal injury. Conclusion: We define differentially expressed lncRNA in the ileum of treatment naive pediatric CD. We show lncRNA utility to correctly classify disease or healthy states and demonstrate their regulation in response to an inflammatory signal. These lncRNA, after mechanistic exploration, may serve as potential new targets for RNA-based interventions. Overall design: Using RNAseq, we performed a systematic profiling of lncRNAs and protein-coding genes expression in 21 days differentiated caco-2 cells
Long ncRNA Landscape in the Ileum of Treatment-Naive Early-Onset Crohn Disease.
Specimen part, Subject
View SamplesT follicular helper (Tfh) cells are a subset of CD4+ T helper (Th) cells that migrate into germinal centers and promote B cell maturation into memory B and plasma cells. Tfh cells are necessary for promotion of protective humoral immunity following pathogen challenge, but when aberrantly regulated, drive pathogenic antibody formation in autoimmunity and undergo neoplastic transformation in angioimmunoblastic T-cell lymphoma and other primary cutaneous T-cell lymphomas. Limited information is available on the expression and regulation of genes in human Tfh cells. Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq. Tfh cell enhancers were enriched near genes highly expressed in lymphoid cells or involved in lymphoid cell function, with many mapping to sites previously associated with autoimmune disease in genome-wide association studies. A group of active enhancers unique to Tfh cells associated with differentially expressed genes was identified. Fragments from these regions directed expression in reporter gene assays. These data provide a significant resource for studies of T lymphocyte development and differentiation and normal and perturbed Tfh cell function. Overall design: Using a fluorescence activated cell sorting-based strategy, we obtained primary Tfh and non-Tfh T effector (Teff) cells from tonsils and prepared genome-wide maps of active, intermediate, and poised enhancers determined by ChIP-seq, with parallel transcriptome analyses determined by RNA-seq.
Global transcriptome analysis and enhancer landscape of human primary T follicular helper and T effector lymphocytes.
No sample metadata fields
View SamplesIn MTN-007, a phase 1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies taken at baseline, after one application or after seven daily applications (15 subjects/arm). Experiments were repeated using primary vaginal epithelial cells from four healthy women.
Mucosal effects of tenofovir 1% gel.
Specimen part, Treatment
View SamplesIn MTN-007, a phase 1, randomized, double-blinded rectal microbicide trial, we used systems genomics/proteomics to determine the effect of tenofovir 1% gel, nonoxynol-9 2% gel, placebo gel or no treatment on rectal biopsies taken at baseline, after one application or after seven daily applications (15 subjects/arm). Experiments were repeated using primary vaginal epithelial cells from four healthy women.
Mucosal effects of tenofovir 1% gel.
Sex, Specimen part, Subject
View SamplesWe analyzed expression of 81 normal muscle samples from humans of varying ages, and have identified a molecular profile for aging consisting of 250 age-regulated genes. This molecular profile correlates not only with chronological age but also with a measure of physiological age. We compared the transcriptional profile of muscle aging to previous transcriptional profiles of aging in kidney and brain, and found a common signature for aging in these diverse human tissues. The common aging signature consists of six genetic pathways; four pathways increase expression with age (genes in the extracellular matrix, genes involved in cell growth, genes encoding factors involved in complement activation, and genes encoding components of the cytosolic ribosome), while two pathways decrease expression with age (genes involved in chloride transport and genes encoding subunits of the mitochondrial electron transport chain). We also compared transcriptional profiles of aging in human to those of the mouse and fly, and found that the electron transport chain pathway decreases expression with age in all three organisms, suggesting that this may be a public marker for aging across species.
Transcriptional profiling of aging in human muscle reveals a common aging signature.
Sex
View Samples