The maternal tract plays a critical role in the success of early embryonic development providing an optimal environment for establishment and maintenance of pregnancy. Preparation of this environment requires an intimate dialogue between the embryo and her mother. To advance our understanding of the process by which a foreign blastocyst is accepted by the maternal endometrium and better address the clinical challenges of infertility and pregnancy failure, it is imperative to decipher this complex molecular dialogue. The objective of the present work is to define the local response(s) of the maternal tract towards the embryo during the earliest stages of pregnancy.
Early developing pig embryos mediate their own environment in the maternal tract.
Specimen part, Disease
View SamplesThe objective of the present study is to investigate if females have the ability to recognise X or Y chromosome bearing spermatozoa and present a different response to different spermatozoa.
The battle of the sexes starts in the oviduct: modulation of oviductal transcriptome by X and Y-bearing spermatozoa.
Specimen part
View SamplesThe tumor suppressor protein 53BP1, a pivotal regulator of DNA double-strand break (DSB) repair, was first identified as a p53-interacting protein over two decades ago, however its direct contributions to p53-dependent cellular activities remain undefined. Here, we reveal 53BP1 stimulates genome-wide p53-dependent gene transactivation and repression events in response to ionizing radiation (IR) and synthetic p53 activation. 53BP1-dependent p53 modulation requires both auto-oligomerization and tandem-BRCT domain mediated bivalent interactions with p53 and the ubiquitin-specific protease USP28. Loss of these activities results in inefficient p53-dependent cell-cycle checkpoint and exit responses. Furthermore, we demonstrate 53BP1-USP28 cooperation to be essential for normal p53-promoter element interactions and gene transactivation-associated events, yet dispensable for 53BP1-dependent DSB repair regulation. Collectively, our data provides a mechanistic explanation for 53BP1-p53 cooperation in controlling anti-tumorigenic cell fate decisions, and reveal these activities to be distinct and separable from 53BP1’s regulation of DNA double-strand break repair pathway choice. Overall design: We evaluated the transcriptional profiles of two 53BP1? cell lines and included a positive (WT) and a negative (p53?) controls. These cell lines were treated with Nutlin-3, ionising radiation or mock treated. Three independent replicates were included for each independent condition generating a total of 36 samples.
53BP1 Integrates DNA Repair and p53-Dependent Cell Fate Decisions via Distinct Mechanisms.
Cell line, Treatment, Subject
View SamplesEight healthy human subjects were enrolled in a 6-day simulated shift work protocol. Blood samples were collected during the two 24-hour measurement periods. Blood samples were collected every 4 hours during both measurement periods. Subjects entered the lab on Day 1. At the start of Day 2, the first 24-hour measurement period was started. Subjects slept according to their habitual sleep/wake schedule, followed by a 16-hour constant posture procedure. On days 3-6, the sleep period was delayed by 10 hours. Following the third night on this schedule, subjects underwent another 24-hour measurement period. During both measurement periods, 7 blood samples were collected and PBMCs were isolated. mRNA was extracted, labelled, and hybridized to microarrays.
Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.
Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
The cellular origin and malignant transformation of Waldenström macroglobulinemia.
Specimen part, Disease stage, Subject
View SamplesAlthough information on the molecular pathogenesis of Waldenstrms Macroglobulinemia (WM) has greatly improved in recent years, the exact cellular origin and the mechanisms behind WM transformation from IgM MGUS remain undetermined. Here, we undertook an integrative phenotypic, molecular and genomic approach to study clonal B-cells from newly-diagnosed patients with IgM MGUS (n=22), smoldering (n=17), and symptomatic WM (n=10). Through principal-component-analysis of multidimensional flow cytometry data, we demonstrated overlapping phenotypic profiles between clonal B-cells from IgM MGUS, smoldering and symptomatic WM patients. Similarly, virtually no genes were significantly deregulated between FACS-sorted clonal B-cells from the three disease stages. Interestingly, while the transcriptome of the Waldenstrms clone was highly deregulated as compared to CD25-CD22+ normal B-cells, significantly less genes were differentially expressed and specific WM pathways down-regulated while comparing the transcriptome of the Waldenstrms clone vs. its normal phenotypic counterpart: CD25+CD22+dim B-cells. The frequency of specific copy number abnormalities [+4, del(6q23.3-6q25.3), +12, and +18q11-18q23] progressively increased from IgM MGUS and smoldering WM vs. symptomatic WM (18% vs. 20% and 73%, respectively; P =.008), suggesting a multistep transformation of clonal B-cells that albeit benign (i.e.: IgM MGUS and smoldering WM), already harbor the phenotypic and molecular signatures of the malignant Waldenstrms clone.
The cellular origin and malignant transformation of Waldenström macroglobulinemia.
Specimen part, Disease stage, Subject
View SamplesOld C57BL/6 mice cannot mount an effective innate immune response
Aged mice are unable to mount an effective myeloid response to sepsis.
Specimen part, Treatment, Time
View SamplesWe quantified differential gene (mRNA) expression in human coronary artery cells treated with native HDL, reconstituted HDL, lipid-free apolipoprotein A-I, small unilamellar vesicles, or PBS control.
HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells.
Specimen part
View SamplesCD4+ T helper lymphocytes that express interleukin-17 (Th17 cells) have critical roles in mouse models of autoimmunity, and there is mounting evidence that they also influence inflammatory processes in humans. Genome-wide association studies in humans have linked genes involved in Th17 cell differentiation and function with susceptibility to Crohns disease, rheumatoid arthritis, and psoriasis1-3. Thus, the pathway towards differentiation of Th17 cells and, perhaps, of related innate lymphoid cells with similar effector functions4, 5, is an attractive target for therapeutic applications. Mouse and human Th17 cells are distinguished by expression of the retinoic acid receptor-related orphan nuclear receptor RORt, which is required for induction of IL-17 transcription and for the manifestation of Th17-dependent autoimmune disease in mice6. By performing a chemical screen with an insect cell-based reporter system, we identified the cardiac glycoside digoxin as a specific inhibitor of RORt transcriptional activity. Digoxin inhibited murine Th17 cell differentiation without affecting differentiation of other T cell lineages and was effective in delaying the onset and reducing the severity of autoimmune disease in mice. At high concentrations, digoxin is toxic for human cells, but non-toxic synthetic derivatives, 20,22-dihydrodigoxin-21,23-diol (Dig(dhd)) and digoxin-21-salicylidene (Dig(sal)), specifically inhibited induction of IL-17 in human CD4+ T cells. Using these small molecule compounds, we demonstrated that RORt is imporant for the maintenance of IL-17 expression in mouse and human effector T cells. These data suggest that derivatives of digoxin can be used as chemical probes for development of RORt-targeted therapeutic agents that attenuate inflammatory lymphocyte function and autoimmune disease.
Digoxin and its derivatives suppress TH17 cell differentiation by antagonizing RORγt activity.
Treatment
View SamplesThe activity of chaperone-mediated autophagy (CMA), a catabolic pathway for selective degradation of cytosolic proteins in lysosomes, decreases with age, but the consequences of this functional decline in vivo remain unknown. In this work, we have generated a conditional knockout mouse to selectively block CMA in liver. We have found that blockage of CMA causes hepatic glycogen depletion and hepatosteatosis. The liver phenotype is accompanied by reduced peripheral adiposity, increased energy expenditure, and altered glucose homeostasis. Comparative lysosomal proteomics revealed that key enzymes in carbohydrate and lipid metabolism are normally degraded by CMA and that impairment of this regulated degradation contributes to the metabolic abnormalities observed in CMA-defective animals. These findings highlight the involvement of CMA in regulating hepatic metabolism and suggest that the age-related decline in CMA may have a negative impact on the energetic balance of old organisms.
Deficient chaperone-mediated autophagy in liver leads to metabolic dysregulation.
Specimen part
View Samples