Iron-deficiency repsonses in Arabidopsis are controlled by several bHLH transcription factors. FIT, for example has been shown to direct iron-uptake responses. However, the role of shoot and root expressed genes bHLH100 and bHLH101 has not be clarified. We used microarray to study what genes might be miss-regulated in the double mutant bhlh100/bhlh101 background
Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway.
Age, Specimen part, Treatment
View SamplesExpression data from HEK293 cells expressing a doxcycline-inducible RANBP6 shRNA
EGFR feedback-inhibition by Ran-binding protein 6 is disrupted in cancer.
Treatment
View Samples17b-Estradiol added to MEL cells expressing Gata1-ER or PU.1-ER transgenes to stimulate either erythropoietic Gata-1 dependent or myeloid PU.1 dependent gene espression in different time points
PU.1 activation relieves GATA-1-mediated repression of Cebpa and Cbfb during leukemia differentiation.
Disease, Disease stage
View SamplesThe M1 and the M2 macrophage polarization programs (activated by IFN? and IL-4, respectively) lie at the opposite edges of a continuum of activation states but are frequently co-activated during co-infections and in cancer despite controlling divergent functional responses. Whether these two programs are mutually exclusive, how they influence each other, and whether one represents the prevailing response, are all open questions. Co-administration of IFN? and IL-4 exerted complex inhibitory effects over the M1 and M2 programs at the level of both epigenomic and transcriptional changes. Computational data mining and validation analyses revealed the molecular basis of the differential sensitivity of genes and cis-regulatory elements to the antagonistic effects of the opposite stimulus. For instance, while STAT1 and IRF motifs were associated with robust and IL-4-resistant responses to IFN?, their coexistence with binding sites for some auxiliary transcription factors such as AP-1, generated vulnerability to IL-4-mediated inhibition. These data provide a core mechanistic framework for the integration of signals that control macrophage activation and the starting point for understanding macrophage responses in complex environmental conditions Overall design: Analysis of transcriptional and epigenomic changes in mouse macrophages stimulated with different cytokines or their combinations
Opposing macrophage polarization programs show extensive epigenomic and transcriptional cross-talk.
Specimen part, Cell line, Treatment, Subject
View SamplesThe genomic repertoire of enhancers and promoters that control the transcriptional output of terminally differentiated cells includes cell type-specific and housekeeping elements. Whether the constitutive activity of these two groups of cis-regulatory elements relies on entirely distinct or instead shared regulators is unknown. By dissecting the cis-regulatory repertoire of macrophages, we found that the ELF subfamily of ETS proteins selectively bound within 60 bp from the transcription start sites of highly active housekeeping genes. ELFs also bound constitutively active, but not poised macrophage-specific enhancers and promoters. The role of ELFs in promoting constitutive transcription is suggested by multiple evidences: ELF sites enabled transcriptional activation by endogenous and minimal synthetic promoters; ELF recruitment was stabilized by the transcriptional machinery, and ELF proteins mediated recruitment of transcriptional and chromatin regulators to core promoters. These data indicate that a distinct subfamily of ETS proteins imparts high transcriptional activity to a broad range of housekeeping and tissue-specific cis-regulatory elements, which is consistent with the role of an ETS family ancestor in core promoter regulation in a lower eukaryote. Overall design: Nascent RNA sequencing of primary bone marrow-derived macrophages (BMDM) This series contains a re-analysis of GSM1880858 from GSE73021. The file MacroTFs_171-genes.fpkm_tracking.gz contains the FPKM values for this sample.
High constitutive activity of a broad panel of housekeeping and tissue-specific <i>cis</i>-regulatory elements depends on a subset of ETS proteins.
Specimen part, Cell line, Treatment, Subject
View SamplesUpon recruitment to active enhancers and promoters, RNA polymerase II (Pol_II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adapter protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1/COMPASS H3K4 methyltransferase and the nuclear Protein Phosphatase 1 (PP1) complexes to the initiating Pol_II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1 or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes, active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. Overall design: polyA-mRNAs or 4sU-labeled RNAs from BMDMs, either untreated or treated for with lipopolysaccharide (LPS) for the indicated time. Experiments were carried out in cells containing either a short hairpin targeting either of these: 1) Wdr82; 2) Set1a+Set1b; 3) Pnuts; or the empty vector (LMP) or a scrambled as a control. When specified, cells were pre-treated with 5,6-Dichloro-1-ß-D-ribofuranosylbenzimidazole (DRB) in order to prevent RNA polymerase II elongation.
Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.
No sample metadata fields
View SamplesElevated levels of microRNA miR-155 represent a candidate pathogenic factor in chronic B-lymphocytic leukemia (B-CLL). In this study, we present evidence that MYB (v-myb myeloblastosis viral oncogene homolog) is overexpressed in a subset of B-CLL patients. MYB physically associates with the promoter of MIR155 host gene (MIR155HG, also known as BIC, B-cell integration cluster) and stimulates its transcription. This coincides with the hypermethylated histone H3K4 residue and spread hyperacetylation of H3K9 at MIR155HG promoter. Our data provide evidence of oncogenic activities of MYB in B-CLL that include its stimulatory role in MIR155HG transcription.
MYB transcriptionally regulates the miR-155 host gene in chronic lymphocytic leukemia.
Specimen part, Disease, Disease stage
View SamplesThe LH surge triggers dramatic transcriptional changes in genes associated with ovulation and luteinization. The present study investigated the spatiotemporal expression of nuclear factor interleukin-3 (NFIL3), a transcriptional regulator of the bZIP transcription factor superfamily, and its potential role in the ovary during the periovulatory period. NFIL3, also known as E4-binding protein 4 or NFIL3/E4BP4, was originally identified as a transcriptional repressor based on its DNA-binding activity at the promoter of the gene encoding the adenovirus E4 protein. Immature female rats were injected with PMSG, treated with hCG, and ovaries or granulosa cells were collected at various times after hCG. Nfil3 mRNA was highly induced both in intact ovaries and granulosa cells after hCG treatment. In situ hybridization demonstrated that Nfil3 mRNA was highly induced in theca-interstitial cells at 4-8 h after hCG, localized to granulosa cells at 12 h, and decreased at 24 h. Over-expression of NFIL3 in granulosa cells inhibited the induction of prostaglandin-endoperoxide synthase 2 (Ptgs2), progesterone receptor (Pgr), epiregulin (Ereg), and amphiregulin (Areg) and down regulated levels of prostaglandin E2. The inhibitory effect on Ptgs2 induction was reversed by NFIL3 siRNA treatment. In theca-interstitial cells the expression of hydroxyprostaglandin dehydrogenase 15-(NAD) (Hpgd) was also inhibited by NFIL3 over-expression. Data from luciferase assays demonstrated that NFIL3 over-expression decreased the induction of the Ptgs2 and Areg promoter activity. EMSA and ChIP analyses indicated that NFIL3 binds to the promoter region containing the DNA binding sites of CREB and C/EBP?. In summary, hCG induction of NFIL3 expression may modulate the process of ovulation and theca-interstitial and granulosa cell differentiation by regulating expression of PTGS2, PGR, AREG, EREG, and HPGD, potentially through interactions with CREB and C/EBP? on their target gene promoters.
A role for nuclear factor interleukin-3 (NFIL3), a critical transcriptional repressor, in down-regulation of periovulatory gene expression.
Sex
View SamplesType 1 diabetes is a multigenic disease caused by T-cell mediated destruction of the insulin producing -cells. Although conventional (targeted) approaches of identifying causative genes have advanced our knowledge of this disease, many questions remain unanswered. Using a whole molecular systems study, we unraveled the genes/molecular pathways that are altered in CD4 T-cells from young NOD mice prior to insulitis (lymphocytic infiltration into the pancreas). Many of the CD4 T-cell altered genes lie within known diabetes susceptibility regions (Idd), including several genes in the diabetes resistance region Idd13 and two genes (Khdrbs1 and Ptp4a2) in the CD4 T-cell diabetogenic activity region Idd9/11. Alterations involved apoptosis/cell proliferation and metabolic pathways (predominant at 2 weeks), inflammation and cell signaling/activation (predominant at 3 weeks), and innate and adaptive immune responses (predominant at 4 weeks). We identified several factors that may regulate these abnormalities: IRF-1, HNF4A, TP53, BCL2L1 (lies within Idd13), IFNG, IL4, IL15, and prostaglandin E2, which were common to all 3 ages; AR and IL6 to 2 and 4 weeks; and Interferon (IFN-I) and IRF-7 to 3 and 4 weeks. Others were unique to the various ages (e. g. MYC, JUN, and APP to 2 weeks; TNF, TGFB1, NFKB, ERK, and p38MAPK to 3 weeks; and IL12 and STAT4 to 4 weeks). Our data suggest that diabetes resistance genes in Idd13 and Idd9/11, and BCL2L1, IL6-AR and IFNG-IRF-1-IFN-I/IRF-7-IL12 pathways play an important role in CD4 T-cells in the early pathogenesis of autoimmune diabetes. Thus, the alternative approach of investigation at the molecular systems level has captured new information, which combined with validation studies, offers the opportunity to test hypotheses on the role played by the genes/molecular pathways identified in this study, to understand better the mechanisms of autoimmune diabetes in CD4 T-cells, and to develop new therapeutic strategies for the disease.
Molecular pathway alterations in CD4 T-cells of nonobese diabetic (NOD) mice in the preinsulitis phase of autoimmune diabetes.
Age, Specimen part
View SamplesCell migration is an instrumental process that ensures cells are properly positioned to support the specification of distinct tissue types during development. To provide insight, we used fluorescence activated cell sorting (FACS) to isolate two migrating cell types from the Drosophila embryo: caudal visceral mesoderm (CVM) cells, precursors of longitudinal muscles of the gut, and hemocytes (HCs), the Drosophila equivalent of blood cells. ~350 genes were identified from each of the sorted samples using RNA-seq, and in situ hybridization was used to confirm expression within each cell type or, alternatively, within other interacting, co-sorted cell types. To start, the two gene expression profiling datasets were compared to identify cell migration regulators that are potentially generally-acting. 73 genes were present in both CVM cell and HC gene expression profiles, including the transcription factor zinc finger homeodomain-1 (zfh1). Comparisons with gene expression profiles of Drosophila border cells that migrate during oogenesis had a more limited overlap, with only the genes neyo (neo) and singed (sn) found to be expressed in border cells as well as CVM cells and HCs, respectively. Neo encodes a protein with Zona pellucida domain linked to cell polarity, while sn encodes an actin binding protein. Tissue specific RNAi expression coupled with live in vivo imaging was used to confirm cell-autonomous roles for zfh1 and neo in supporting CVM cell migration, whereas previous studies had demonstrated a role for Sn in supporting HC migration. In addition, comparisons were made to migrating cells from vertebrates. Seven genes were found expressed by chick neural crest cells, CVM cells, and HCs including extracellular matrix (ECM) proteins and proteases. In summary, we show that genes shared in common between CVM cells, HCs, and other migrating cell types can help identify regulators of cell migration. Our analyses show that neo in addition to zfh1 and sn studied previously impact cell migration. This study also suggests that modification of the extracellular milieu may be a fundamental requirement for cells that undergo cell streaming migratory behaviors. Overall design: Examination of genes expressed in two migrating cell populations (CVM and hemocytes) during their active cell migration and the rest of cell types of corresponding stages
Comparative analysis of gene expression profiles for several migrating cell types identifies cell migration regulators.
Specimen part, Subject
View Samples