refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon SRP042009
RNA-seq of mouse ES cells depleted of MOF, MSL1, MSL2 or KANSL3
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We have studied the regulatory potential of MYST1-(MOF)-containing MSL and NSL complexes in mouse embryonic stem cells (ESCs) and neuronal progenitors. We find that both complexes influence transcription by binding to promoters as well as TSS-distal enhancer regions. In contrast to flies, the MSL complex is not enriched on the X chromosome yet it is crucial for mammalian X chromosome regulation as it specifically regulates Tsix ncRNA, the major repressor of Xist lncRNA. MSL depletion leads to severely decreased Tsix expression, reduced REX1 recruitment, and consequently accumulation of Xist RNA in ESCs. The NSL complex provides additional, Tsix-independent repression of Xist by maintaining pluripotency. MSL and NSL complexes therefore act synergistically by using distinct pathways to ensure a fail-safe mechanism for the repression of X inactivation in ESCs. Overall design: We have performed ChIP-seq of KANSL3, MCRS1, MOF, MSL1 and MSL2 in mouse ESCs, and KANSL3, MOF and MSL2 in NPCs, in duplicate and normalised against their inputs. We have also performed RNA-seq following knockdown of Kansl3, Mof, Msl1 and Msl2 mouse embryonic stem cells in triplicate. NB: Kansl3 and Mof knockdown-RNAseq are analyzed against their own scrambled controls, and Msl1 and Msl2 against another scrambled control triplicate. siMCRS1 & siMOF were compared to scrambled1 (scr1) siMsl1 and siMsl2 were compared to scr2 siNsl3 was compared to scr3

Publication Title

MOF-associated complexes ensure stem cell identity and Xist repression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP186683
Transcriptome analysis of various TOX+ and TOX- tumor-infiltrating CD8 T cells and in vitro TOX over-expressing T cells.
  • organism-icon Mus musculus
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

TOX is selectively expressed in tumor-infiltrating CD8 T cells however the role of TOX in peripheral CD8 T cells is not known. The two goals of this study are to elucidate transcriptional changes between TOX-sufficient and TOX-deficient tumor infiltrating CD8 T cells and to elucidate the molecular program induced by TOX overexpression in peripheral CD8 T cells. Overall design: CD8 T cells were sorted by flow cytometry and RNA-seq was performed.

Publication Title

TOX is a critical regulator of tumour-specific T cell differentiation.

Sample Metadata Fields

Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact