refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon GSE26294
Functional abnormalities and changes in gene expression in fibroblasts and macrophages from the bone marrow of patients with acute myeloid leukemia
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

In leukemias and other malignancies of the bone marrow, little is known about the fate of fibroblasts and resident macrophages after normal hematopoietic cells are replaced by neoplastic cells. In the present investigation we used two-stage long-term bone marrow cultures to detect functional stromal cell abnormalities in acute myeloid leukemia, myelodysplastic syndromes and multiple myeloma. While fibroblasts from multiple myeloma and macrophages from multiple myeloma and myelodysplastic syndromes were functionally indistinguishable from the respective cell types from normal bone marrow, fibroblasts from patients with acute myeloid leukemia or myelodysplastic syndromes possessed a significantly lower ability to support hematopoiesis originating from co-cultured normal CD34-positive cells than fibroblasts from healthy marrow. Conversely, macrophages from acute myeloid leukemia marrow significantly enhanced the production of blood cells compared with control macrophages. Aberrant function in fibroblasts and macrophages was associated with consistent changes in the expression of genes whose products are involved in hematopoietic stem cell control, such as cytokines and regulators of the Wnt and Notch signalling pathways.

Publication Title

Functional abnormalities and changes in gene expression in fibroblasts and macrophages from the bone marrow of patients with acute myeloid leukemia.

Sample Metadata Fields

Sex, Disease, Disease stage, Subject

View Samples
accession-icon GSE36907
Cellular Origin and Pathophysiology of Chronic Lymphocytic Leukemia
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The cellular origin of chronic lymphocytic leukemia (CLL) is debated. Transcriptome analysis of CLL and normal peripheral blood and splenic B cell subsets displayed highest similarity of CLL to mature CD5+ B cells. We identified a distinct CD5+CD27+ post-germinal center B cell subset, and revealed that immunoglobulin V gene mutated CLL are more similar to mutated CD5+ B cells, whereas unmutated CLL are more related to unmutated CD5+ B cells. Stereotyped immunoglobulin V gene rearrangements were significantly enriched among CD5+ B cells, providing further genetic evidence for a derivation of CLL from CD5+ B cells. Moreover, we identified deregulated expression patterns providing novel insights into the pathophysiology of CLL, including downregulation of EBF1 and KLF family members.

Publication Title

Cellular origin and pathophysiology of chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27858
The novel antisense Bcl-2 inhibitor SPC2996 causes rapid leukemic cell clearance and immune activation in chronic lymphocytic leukemia
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SPC2996 is a novel locked nucleic acid (LNA) phosphorothioate antisense molecule targeting the mRNA of the Bcl-2 oncoprotein. We investigated the mechanism of action of SPC2996 and the basis for its clinically observed immunostimulatory effects in chronic lymphocytic leukemia (CLL). Patients with relapsed CLL were treated with a maximum of six doses of SPC2996 (0.2-6mg/ kg) in a multicenter phase I trial. Microarray-based transcriptional profiling of circulating CLL cells was carried out before and after the first infusion of SPC2996 in eighteen patients.

Publication Title

The novel antisense Bcl-2 inhibitor SPC2996 causes rapid leukemic cell clearance and immune activation in chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE19147
CD3+ T-cells of B-cell chronic lymphocytic leukemia
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Analysis of T-cells isolated from CD3+ T-cells of patients with B-cell chronic lymphocytic leukemia (B-CLL). In contrast to other types of cancers, the non-malignant T-cell compartment of B CLL patients is expanded. Results provide insights into the role of T-cells in B-CLL.

Publication Title

Expanded CD8+ T cells of murine and human CLL are driven into a senescent KLRG1+ effector memory phenotype.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP059322
Recurrent alterations of TNFAIP3 (A20) in T-cell large granular lymphocytic leukemia
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We identified a novel recurrent genetic lesion in T-LGL. Mutations of the tumour suppressor gene TNFAIP3 causing amino-acid exchanges or protein truncations were seen in 3/39 cases (8%). Overall design: RNA sequencing (Illumina HiSeq 2500) of 5 index patients with paired tumor and non-tumor samples.

Publication Title

Recurrent alterations of TNFAIP3 (A20) in T-cell large granular lymphocytic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36416
Protein kinase C-beta dependent activation of NF-kB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia in B-cells in vivo.
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE36415
Effect of NF-kappaB activation in bone marrow stromal cells co-cultured with CLL cells
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.

Publication Title

Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE36414
Gene expression changes induced in the stromal cell line EL08-1D2 by co-culture with leukemic B cells (CLL)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Tumor cell survival critically depends on heterotypic communication with benign cells in the microenvironment. Here we describe a novel survival signaling pathway activated in stromal cells by contact to B-cells from chronic lymphocytic leukemia (CLL) patients. The expression of PKC-II and the subsequent activation of NF-B in bone marrow stromal cells is a prerequisite to support the survival of malignant B-cells. PKC- knockout mice are insusceptible to CLL-transplantations, underscoring the in vivo significance of the PKC-II- NF-B signaling pathway in the tumor microenvironment. Upregulated stromal PKC-II in biopsies from CLL, breast- and pancreatic- cancer patients suggest that this pathway may commonly be activated in a variety of malignancies.

Publication Title

Protein kinase c-β-dependent activation of NF-κB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE49590
Expression data from 10 day old Arabidopsis thaliana seedlings
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Microarrays were used to detail the global programme of gene expression comparing wild-type and RNAi knock-down plants of SPT4-1 and SPT4-2

Publication Title

The transcript elongation factor SPT4/SPT5 is involved in auxin-related gene expression in Arabidopsis.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP077927
An inducible and reversible embryonic stem cell biobank reveals functional genomic pathways and disease targets [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Clonal cellular variance often confounds reproducibility of forward and reverse genetic studies. We developed combinatorial approaches for whole genome saturated mutagenesis using haploid murine ES cells to permit induction and reversion of genetic mutations. Using these systems, we created a biobank with over 100000 individual ES cell lines with repairable and genetically bar coded mutations targeting 16950 genes. This biobank termed “Haplobank” is freely available. In addition, we developed a genetic color coding system for rapid repair of mutations and direct functional validation in sister clones. Using this system, we report functional validation of essential ES cell genes. We also identified phospholipase16G as a key pathway for cytotoxicity of human rhinoviruses, the most frequent cause of the common cold. Moreover, we derived 3D blood vessel organoids from haploid ES cells, combining conditional mutagenesis in haploid ES cells with tissue engineering. We identified multiple novel genes, such as Connexin43/Gja1, in blood vessel formation and tip cell specification in vitro and also in vivo. Taken together, we develop a conditional homozygous ES cell resource for the community to empower controlled genetic studies in murine ES cells and tissues derived from it. Overall design: RNA-Seq was carried out using standard protocols. https://www.haplobank.at/ecommerce/control/haplobank_resource

Publication Title

Comparative glycoproteomics of stem cells identifies new players in ricin toxicity.

Sample Metadata Fields

Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact