refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 125 results
Sort by

Filters

Technology

Platform

accession-icon GSE36683
Gene Regulation by Estrogen Signaling and DNA Methylation in MCF7 Breast Cancer Cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring potential underlying molecular mechanisms in human MCF7 breast cancer cells. Principal Findings: Gene expression profiling revealed that the expression of approximately 150 genes was influenced by both 17-estradiol (E2) and a hypomethylating agent 5-aza-2-deoxycytidine (DAC). Based on gene ontology (GO), CpG island prediction analysis and previously reported estrogen receptor (ER) binding regions, we selected six genes for further analysis (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2). GO analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis, while CpG island prediction of promoter regions reveals that the promoters of these genes contain at least one CpG island. Using chromatin immunoprecipitation, we show that ER is recruited to CpG islands in promoters, but neither in an E2- nor in a DAC-dependent fashion. DAC treatment reactivates the expression of all selected genes although only the promoters of BTG3 and FHL2 genes are methylated, with E2 treatment showing no effect on the methylation status of these promoters. Conclusions: We identified a set of genes regulated by both estrogen signaling and DNA methylation. However, our data does not support a direct molecular interplay of mediators of estrogen and epigenetic signaling at promoters of regulated genes.

Publication Title

Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE65495
Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

Members of bromodomain and extra-C terminal (BET) domain family and the histone deacetylase (HDAC) enzyme family efficiently regulate the expression of important oncogenes and tumor suppressors. HDACs induce histone hypoacetylation meanwhile BET proteins bind to acetylated lysines on histones to regulate gene transcription. Here we show that the BET inhibitor JQ1 inhibited proliferation and induced apoptosis of both triple negative and estrogen receptor positive breast cancer cells. Consistent with the critical role of histone acetylation in the regulation of gene expression, microarray analysis revealed broad transcriptional changes after JQ1 or HDAC inhibitor treatment. By examining the molecular pathways affected by the epigenetic inhibitors we found that both BET and HDAC inhibitors are suppressing similar genes that were involved in cell cycle regulation. Combining JQ1 with HDAC inhibitors, we found that the combination significantly decreased cell viability. This effect was partly mediated by the more efficient suppression of genes essential for cell-cycle progression. Furthermore, we detected a dramatic increase in the expression of several members of the USP17 family of deubiquitinating enzymes in response to the single agent treatment, which further increased by the combination treatment. Since constitutive expression of USP17 has been reported to block the Ras/MAPK pathway, our data also suggest that the blockade of the Ras/MAPK pathway might also be involved in the synergistic effect of the combination treatment. In conclusion, this study suggests that co-treatment with BET inhibitors and HDAC inhibitors could be an effective treatment regime in future breast cancer therapy.

Publication Title

Induction of USP17 by combining BET and HDAC inhibitors in breast cancer cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE71977
Genome-wide profiling of inflammatory cistrome reveals AP-1/c-Jun as a key regulator of TNFalpha-mediated triple-negative breast cancer progression.
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer, Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFα-mediated Triple-negative Breast Cancer Progression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE71915
Genome-wide profiling of inflammatory cistrome reveals AP-1/c-Jun as a key regulator of TNFalpha-mediated triple-negative breast cancer progression [microarray]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st), Illumina Genome Analyzer

Description

Triple-negative breast cancer (TNBC) represents a highly aggressive form of breast cancer with limited treatment options. Proinflammatory cytokines such as TNFalpha can facilitate tumor progression and metastasis. However, our knowledge of the molecular mechanisms underlying TNBC progression mediated by inflammation is still limited. Here, we define the AP-1 transcription factor c-Jun cistrome, which is comprised of 13800 binding sites responsive to TNFalpha-induced signaling in TNBC cells. In addition, we show that c-Jun regulates nearly a third of the TNFalpha-elicited transcriptome. Expression of the c-Jun-regulated pro-invasion gene program is strongly associated with clinical outcomes in TNBCs. Mechanistically, we demonstrate that c-Jun drives TNFalpha-mediated TNBC tumorigenicity by transcriptional regulation of Ninj1. As exemplified by the c-Jun bound CXC chemokine genes clustered on chromosome 4, we demonstrate that NF-kB might be a pioneer factor and is required for the regulation of TNFalpha-inducible inflammatory genes, whereas c-Jun has little effect. Together, our results uncover AP-1 as an important determinant for inflammation-induced cancer progression, rather than inflammatory response.

Publication Title

AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFα-mediated Triple-negative Breast Cancer Progression.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE54890
Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE42680
Early B-cell Factor 1 Regulates Adipocyte Morphology and Lipolysis in White Adipose Tissue [expression profiling]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st), Illumina HiSeq 2000

Description

To investgate the role of EBF1 in human adipocyte, we performed global expression profiling in human adipocytes transfected with siRNA targeting EBF1.

Publication Title

Early B cell factor 1 regulates adipocyte morphology and lipolysis in white adipose tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62178
Mastermind-like protein 1 regulates DNA methylation and expression of early developmental gene clusters in human embryonic kidney cells
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62175
Mastermind-like protein 1 regulates DNA methylation and expression of early developmental gene clusters in human embryonic kidney cells (expression)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Mastermind-like 1 (MAML1) is a transcriptional coregulator that has been associated with early development of many systems such as neuronal, muscular, cardiovascular and urogenital. The present study aimed to explore the genome-wide effects of MAML1 on gene expression and DNA methylation in human embryonic kidney cells. RNA expression was measured using a microarray that screens approximately 36,000 transcripts, and DNA methylation was determined for 450,000 CpG sites. 225 genes were found to be differentially expressed, while 11802 CpG sites were found to be differentially methylated in MAML1-expressing cells. A subset of 211 differentially methylated loci was associated with the expression of 85 genes. Gene ontology analysis revealed that these genes are involved in the regulation of urogenital system development, cell adhesion and embryogenesis.

Publication Title

The transcriptional coregulator MAML1 affects DNA methylation and gene expression patterns in human embryonic kidney cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE16059
Gene Expression in Peripheral Blood Leucocytes in Monozygotic Twins Discordant for Chronic Fatigue
  • organism-icon Homo sapiens
  • sample-icon 83 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background. Chronic fatiguing illness remains a poorly understood syndrome of unknown pathogenesis. We attempted to identify biomarkers for chronic fatiguing illness using microarrays to query the transcriptome in peripheral blood leukocytes. Methods. Cases were 44 individuals who were clinically evaluated and found to meet standard international criteria for chronic fatigue syndrome or idiopathic chronic fatigue, and controls were their monozygotic co-twins who were clinically evaluated and never had even one month of impairing fatigue. Biological sampling conditions were standardized and RNA stabilizing media were used. These methodological features provide rigorous control for bias resulting from case-control mismatched ancestry and experimental error. Individual gene expression profiles were assessed using Affymetrix Human Genome U133 Plus 2.0 arrays. Findings. There were no significant differences in gene expression for any transcript. Conclusions. Contrary to our expectations, we were unable to identify a biomarker for chronic fatiguing illness in the transcriptome of peripheral blood leukocytes suggesting that positive findings in prior studies may have resulted from experimental bias.

Publication Title

Gene expression in peripheral blood leukocytes in monozygotic twins discordant for chronic fatigue: no evidence of a biomarker.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE25402
Adipose Tissue MicroRNAs as Regulators of CCL2 Production in Human Obesity
  • organism-icon Homo sapiens
  • sample-icon 119 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Adipose tissue microRNAs as regulators of CCL2 production in human obesity.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact