We generated single-cell transcriptomes from a large number of single cells using several commercially available platforms, in both microliter and nanoliter volumes, and compared performance between them. We benchmarked each method to conventional RNA-seq of the same sample using bulk total RNA, as well as to multiplexed qPCR, which is the current gold standard for quantitative single-cell gene expression analysis. In doing so, we were able to systematically evaluate the sensitivity, precision, and accuracy of various approaches to single-cell RNA-seq. Our results show that it is possible to use single-cell RNA-seq to perform quantitative transcriptome measurements of individual cells, that it is possible to obtain quantitative and accurate gene expression measurements with a relatively small number of sequencing reads, and that when such measurements are performed on large numbers of cells, one can recapitulate the bulk transcriptome complexity, and the distributions of gene expression levels found by single-cell qPCR. Overall design: 109 single-cell human transcriptomes were analyzed in total; 96 using nanoliter volume sample processing on a microfluidic platform, Nextera library prep (biological replicates); 3 using the SMARTer cDNA synthesis kit, Nextera library prep (biological replicates); 3 using the Transplex cDNA synthesis kit, Nextera library prep (biological replicates); 7 using the Ovation Nugen cDNA synthesis kit (biological replicates) where 3 used Nextera library prep and 4 used NEBNext library prep. In addition, 4 bulk RNA samples were sequenced: bulk RNA generated using ~1 million pooled cells was used to make bulk libraries, 2 of which were made using SMARTer cDNA synthesis kit (technical replicates) and 2 made using Superscript RT kit with no amplification (technical replicates). All 4 bulk samples were made into libraries using Nextera.
Quantitative assessment of single-cell RNA-sequencing methods.
No sample metadata fields
View SamplesBreast cancers contain a minority population of cancer cells characterized by CD44 expression but low or undetectable levels of CD24 (CD44+CD24-/low) that have higher tumorigenic capacity than other subtypes of cancer cells. METHODS: We compared the gene-expression profile of CD44+CD24-/low tumorigenic breast-cancer cells with that of normal breast epithelium. Differentially expressed genes were used to generate a 186-gene invasiveness gene signature (IGS), which was evaluated for its association with overall survival and metastasis-free survival in patients with breast cancer or other types of cancer. RESULTS: There was a significant association between the IGS and both overall and metastasis-free survival (P<0.001, for both) in patients with breast cancer, which was independent of established clinical and pathological variables. When combined with the prognostic criteria of the National Institutes of Health, the IGS was used to stratify patients with high-risk early breast cancer into prognostic categories (good or poor); among patients with a good prognosis, the 10-year rate of metastasis-free survival was 81%, and among those with a poor prognosis, it was 57%. The IGS was also associated with the prognosis in medulloblastoma (P=0.004), lung cancer (P=0.03), and prostate cancer (P=0.01). The prognostic power of the IGS was increased when combined with the wound-response (WR) signature. CONCLUSIONS: The IGS is strongly associated with metastasis-free survival and overall survival for four different types of tumors. This genetic signature of tumorigenic breast-cancer cells was even more strongly associated with clinical outcomes when combined with the WR signature in breast cancer.
The prognostic role of a gene signature from tumorigenic breast-cancer cells.
No sample metadata fields
View SamplesWe report RNA-seq data obtained from FACS-isolated live neurons at third instar larval or P14 pupal stage, and from BG3 cells. RNA from neurons with RNAi-based loss of shep or GFP control is used to construct stranded RNA-seq library. RNA from BG3 cells treated with dsRNA targeting shep or GFP is used to construct RNA-seq library. Overall design: RNA-seq data of loss-of-shep neurons and control neurons in larval and pupal stages, and from shep-depleted or control BG3 cells.
Shep regulates <i>Drosophila</i> neuronal remodeling by controlling transcription of its chromatin targets.
Specimen part, Cell line, Treatment, Subject
View SamplesChromatin insulators are DNA-protein complexes situated throughout the genome capable of demarcating independent transcriptional domains. Previous studies point to an important role for RNA in gypsy chromatin insulator function in Drosophila; however, the identity of these putative insulator-associated RNAs is not currently known. Here we utilize RNA-immunoprecipitation and high throughput sequencing (RIP-seq) to isolate RNAs stably associated with gypsy insulator complexes. Strikingly, these RNAs correspond to specific sense-strand, spliced, and polyadenylated mRNAs, including two insulator protein transcripts. In order to assess the functional significance of these associated mRNAs independent of their coding function, we expressed untranslatable versions of these transcripts in developing flies and observed both alteration of insulator complex nuclear localization as well as improvement of enhancer-blocking activity. Together these data suggest a novel, noncoding mechanism by which certain mRNAs contribute to chromatin insulator function. Overall design: RIP-seq of insulator proteins with different library preparations and multiple biological replicates
Messenger RNA is a functional component of a chromatin insulator complex.
Subject
View SamplesOur mouse model of BE in which overexpression of IL-1b in the squamous esophagus induces chronic inflammation leads to metaplasia and dysplasia at the squamo-columnar junction (SCJ) in the mouse gastro-esophageal junction resembles the human disease. Adult L2-IL1b mice were employed to investigate changes to the transcriptional landscape at the SCJ during disease progression from BE to EAC following pharmaceutical or genetic perturbations of interest to BE biology.
Notch Signaling Mediates Differentiation in Barrett's Esophagus and Promotes Progression to Adenocarcinoma.
No sample metadata fields
View SamplesHuman iPS cells derived from normal and Fragile-X fibroblasts in order to assess the capability of Fragile-X iPS cells to be used as a model for different aspects of Fragile-X syndrome. Microarry analysis used to compare global gene expression between human ES cells, the normal and the mutant iPS cells and the original fibroblasts, to demonstrate that the overall reprogramming process succeeded, and that the FX-iPS cells are fully reprogrammed cells.
Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells.
Specimen part, Disease, Cell line
View SamplesCarbonic anhydrase 1 (Car1), an early specific marker of the erythroid differentiation, has been used to distinguish fetal and adult erythroid cells since its production closely follows the - to -globin transition, but the molecular mechanism underlying transcriptional regulation of Car1 is unclear. Here, we show that Car1 mRNA decreases significantly when erythroid differentiation is induced in MEL cells. The Ldb1 protein complex including GATA1/SCL/LMO2 binds to the Car1 promoter in uninduced cells and reduced enrichment of the complex during differentiation correlates with loss of Car1 expression. Knockdown of Ldb1 results in a reduction of Ser2 phosphorylated RNA Pol II and Cdk9 at the Car1 promoter region, suggesting that Ldb1 is required for recruitment of Pol II as well as the transcription regulator P-TEFb to enhance elongation of Car1 transcripts. Taken together, these data show that Ldb1 forms a regulatory complex to maintain Car1 expression in erythroid cells.
Ldb1 regulates carbonic anhydrase 1 during erythroid differentiation.
Specimen part
View SamplesInterferon is effective at inducing complete remissions in patients with Chronic Myelogenous Leukemia (CML), and evidence supports an immune mechanism. Here we show that the Type I Interferons (alpha and beta) regulate expression of the Interferon consensus sequence binding protein (ICSBP) in bcr-abl transformed cells and as shown previously for ICSBP, induce a vaccine-like immunoprotective effect in a murine model of bcr-abl induced leukemia. We identify the chemokines CCL6 and CCL9 as genes prominently induced by the Type I Interferons and ICSBP, and demonstrate that these immunomodulators are required for the immunoprotective effect of ICSBP expression. Insights into the role of these chemokines in the anti-leukemic response of interferons suggest new strategies for immunotherapy of CML.
ICSBP-mediated immune protection against BCR-ABL-induced leukemia requires the CCL6 and CCL9 chemokines.
No sample metadata fields
View SamplesApproximately 2.5 mg dry Col-0 seedlings were surface sterilized and stratified for 2 days at 4degreesC in liquid media containing 1.5% sucrose (w/v) before being transferred to light with constant shaking at 100 rpm on an orbital shaker. After 7 days, the seedling clusters were subjected to the treatments for 1 hr followed by total RNA isolation using the RNAqueous kit (Ambion). Each treatment was performed in triplicate or quadruplicate. All labeling (Enzo) and hybridization (Affymetrix) procedures were performed as directed by the manufacturers. Raw probe intensities output by the Affymetrix MAS software were processed using the RMA algorithm to obtain an expression measure for each gene on each array.
Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis.
No sample metadata fields
View SamplesEngineering clinically relevant cells in vitro holds promise for regenerative medicine, but most protocols fail to faithfully recapitulate target cell properties. To address this, we developed CellNet, a network biology platform that determines whether engineered cells are equivalent to their target tissues, diagnoses aberrant gene regulatory networks, and prioritizes candidate transcriptional regulators to enhance engineered conversions. Using CellNet, we improved B cell to macrophage conversion, transcriptionally and functionally, by knocking down predicted B cell regulators. Analyzing conversion of fibroblasts to induced hepatocytes (iHeps), CellNet revealed an unexpected intestinal program regulated by the master regulator Cdx2. We observed functional engraftment of mouse colon by iHeps, thereby establishing their broader potential as endoderm progenitors and demonstrating direct conversion of fibroblasts into intestinal epithelium. Our studies illustrate how CellNet can be employed to improve direct conversion and to uncover unappreciated properties of engineered cells.
Dissecting engineered cell types and enhancing cell fate conversion via CellNet.
Specimen part
View Samples