Phenotypes representative of normal, transformed and experimentally manipulated human B cells related to the germinal center structure.
Reverse engineering of regulatory networks in human B cells.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.
Specimen part
View SamplesThe pathways regulating the formation of the germinal center (GC) dark- (DZ) and light- (LZ) zones are unknown. We show that FOXO1 expression is restricted to the GC DZ and is required for DZ formation, since its absence in mice leads to the complete loss of DZ gene programs and the formation of LZ-only GCs. FOXO1-negative GC B-cells display normal somatic hypermutation, but defective affinity maturation and class switch recombination. The function of FOXO1 in sustaining the DZ program involves the transactivation of the chemokine receptor CXCR4, and the cooperation with BCL6 in the trans-repression of genes involved in immune activation, DNA-repair and plasma cell differentiation. These results have also implications for understanding the role of FOXO1 mutations in lymphomagenesis.
The FOXO1 Transcription Factor Instructs the Germinal Center Dark Zone Program.
Age, Specimen part
View SamplesMicroarrays of gene expression in human germinal center light zone and dark zone B cells sorted according to the expression of cell surface molecules CD83 and CXCR4
Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.
Specimen part
View SamplesMicroarrays of gene expression in mouse germinal center light zone and dark zone B cells sorted according to the expression of cell surface molecules CD83 and CXCR4
Identification of human germinal center light and dark zone cells and their relationship to human B-cell lymphomas.
Specimen part
View SamplesGenome-wide mapping and characterization of novel Notch-regulated long non-coding RNAs in acute leukemia Overall design: Total RNA was extracted from samples using the RNeasy Plus mini kit (Life Technologies, Carlsbad, CA). Samples were then subject to PolyA selection (Figures 1E, 5F and 5G only) using oligo-dT beads (Life Technologies, Carlsbad, CA) or rRNA removal (all other samples) using the Ribo-Zero kit (Epicentre, Madison, WI) according to the manufacturers instructions. The resulting RNA samples were then used as input for library construction using the dUTP method as described by Parkhomchuck et al, 2009. RNA libraries were then sequenced on the Illumina HiSeq 2000 or 2500 using 50bp paired-end reads.
Genome-wide mapping and characterization of Notch-regulated long noncoding RNAs in acute leukemia.
No sample metadata fields
View SamplesSequencing studies from several model systems have suggested that diverse and abundant small RNAs may derive from tRNA, but the function of these molecules remains undefined. Here we demonstrate that one such tRNA fragment, cloned from human B cells and designated CU1276, in fact possesses the functional characteristics of a microRNA, including a DICER1-dependent biogenesis, physical association with Argonaute proteins, and the ability to repress mRNA transcripts in a sequence-specific manner. The gene expression profiling undertaken for this study was done in order to assay mRNA-level changes in 293T cells upon modulation of CU1276 levels, and thereby to identify direct targets of this sequence. Ultimately, we fully validated the endogenous gene RPA1 as a CU1276 target.
tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma.
Specimen part, Cell line
View SamplesGerminal centers (GC) arise within B cell follicles upon antigenic challenge. In the dark zones (DZ) of GCs, B cells proliferate and hypermutate their immunoglobulin genes, and mutants with increased affinity are positively selected in the light zone (LZ) to either differentiate into plasma and memory cells, or re-enter the DZ for further refinement. However, the molecular circuits governing GC positive selection are not known. Here, we show that the GC reaction requires the biphasic regulation of c-MYC expression, involving its transient induction during early GC commitment, its repression by BCL6 in DZ B cells, and its re-induction in a subpopulation of positively selected LZ B cells destined to DZ re-entry. Accordingly, acute disruption of MYC function in vivo leads to GC collapse, indicating an essential role in GC physiology. These results have implications for our understanding of GC selection and the role of MYC deregulation in B cell lymphomas.
The proto-oncogene MYC is required for selection in the germinal center and cyclic reentry.
Specimen part
View SamplesMature B cells leave the bone marrow as naïve B cells and migrate to the secondary lymphoid organs where they encounter the antigen for the first time. This interaction stimulates B cells to rapidly grow and form characteristic histological structures called germinal center. In the germinal centers, B cells are targeted by mechanisms of genetic editing of the immunoglobulin loci, namely somatic hypermutation and class switch recombination, undergo selection for high affinity immunoglobulin receptors and are committed to differentiate into memory B cells or plasma cells. GCs display two histological areas the dark and the light zone that have been characterized as functionally distinct compartments through which B cells recycle multiple times during the germinal center reaction. Overall design: Naïve, germinal center and memory B cells were isolated from three independent donors each.
MEF2B Instructs Germinal Center Development and Acts as an Oncogene in B Cell Lymphomagenesis.
Specimen part, Subject
View SamplesBurkitt lymphoma (BL) is a highly aggressive B cell non-Hodgkin lymphoma (B-NHL), which originates from germinal center (GC) B cells and harbors translocations deregulating the MYC oncogene. A comparative analysis of microRNAs (miRNAs) expressed in normal and malignant GC B cells identified miR-28 as significantly down-regulated in BL, as well as in other GC-derived B-NHL. We show that re-expression of miR-28 impairs cell growth and clonogenic properties of BL cells by modulating several targets including MAD2L1, a component of the spindle checkpoint whose down-regulation is essential in mediating miR-28-induced growth-arrest, and BAG1, an activator of the ERK pathway.
MicroRNA 28 controls cell proliferation and is down-regulated in B-cell lymphomas.
Cell line, Treatment, Time
View Samples