refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 243 results
Sort by

Filters

Technology

Platform

accession-icon GSE38120
Aorta profiling HMDP
  • organism-icon Mus musculus
  • sample-icon 188 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

Identify genes in the aorta whose expressions under genetic regulation in the Hybrid Mouse Diversity Panel (HMDP). The HDMP is comprised of classical inbred and recombinant inbred wild-type mice. The RMA values of genes were used for genome-wide association as described in Bennett et al. Genome Research 2010 (PMID 20054062). These data were used to identify candidate genes at loci associated with atherosclerosis.

Publication Title

High-resolution association mapping of atherosclerosis loci in mice.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE52969
Expression data from Sar1 isoform overexpressing rat hepatoma cell lines
  • organism-icon Rattus norvegicus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

The endoplasmic reticulum (ER) is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other, or with the activity of the COPII machinery, which transports ER cargo to the Golgi. The Sar1B component of this machinery is mutated in Chylomicron Retention Disorder, establishing that this Sar1 isoform secures delivery of dietary lipids into the circulation.

Publication Title

The endoplasmic reticulum coat protein II transport machinery coordinates cellular lipid secretion and cholesterol biosynthesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14807
Investigation of over-expressing Annexin receptor cell line with and without agonists
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The therapeutic potential of pro-resolution factors in determining the outcome of inflammatory events has gained ground over the past decade. However, the attention has been focused on the non-genomic effects of these endogenous, anti-inflammatory substances. In this study, we have focused our attention on identifying specific annexin 1 (AnxA1) protein/ALX receptor mediated gene activation, in an effort to identify down-stream genomic targets of this well-known, glucocorticoid induced, pro-resolution factor.

Publication Title

Downstream gene activation of the receptor ALX by the agonist annexin A1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26764
Gene expression profiling of miR-regulated genes in proliferating C2C12
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to detail the global programme of gene expression upon the over-expression of seven different differentiation-associated, E1A-regulated microRNAs.

Publication Title

Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE28457
Gene expression profile of E1A infected C2C12 myotubes
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Proliferating C2C12 myoblasts were induced to differentiate into myotubes and then infected with adenovirus expressing E1A (Ad-E1A), which induces cell cycle re-entry and dedifferentiation.

Publication Title

Differentiation-associated microRNAs antagonize the Rb-E2F pathway to restrict proliferation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE33324
Cachexia-inducible Transforming growth factor-beta1 stimulated Clone-22 D4 controls acute hepatic lipid homeostasis.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To explore the molecular basis for TSC22D4 function in hepatic lipid homeostasis in vivo TSC22D4 was knocked down in the mouse liver using adenovirus and performed genome wide expression analysis.

Publication Title

TSC22D4 is a molecular output of hepatic wasting metabolism.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33164
HDAC3 requirement for the inflammatory gene expression program in macrophages
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE33162
HDAC3 requirement for the inflammatory gene expression program in macrophages [gene expression]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Pan-Hdac inhibitors (HDACi) are endowed with a potent anti-inflammatory activity, but the relative role of each of the eleven Hdac proteins sensitive to HDACi to the inflammatory gene expression program is unknown. Using an integrated genomic approach we found that Hdac3-deficient macrophages are unable to activate almost half of the inflammatory gene expression program when stimulated with lipopolysaccharide (LPS). A large part of the activation defect is due to loss of basal and LPS-inducible expression of IFNb, which in basal cells maintains Stat1 protein levels, and after stimulation acts in an autocrine/paracrine manner to promote a secondary wave of Stat1-dependent gene expression. We show that loss of Hdac3-mediated repression of nuclear receptors leads to hyperacetylation of thousands of genomic sites and associated gene derepression. The upregulation of the constitutively expressed prostaglandin endoperoxide synthase, Ptgs1 (Cox-1), has a causative role in the phenotype, since its chemical inhibition reverts the Ifnb activation defect. These data may have relevance for the use of selective Hdac inhibitors as anti-inflammatory agents.

Publication Title

Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE71415
p38 Mitogen-Activated Protein Kinase Signals the Immunoresolving Actions of Resolvin D1 in Inflamed Human Visceral Adipose Tissue
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Activation of the innate immune system leading to a persistent state of low-grade of tissue inflammation greatly influences the risk of developing metabolic complications associated with obesity. In this study, we characterized the inflammatory state in adipose tissue from obese patients and explored the potential of the specialized pro-resolving mediator (SPM) resolvin D1 (RvD1) to actively terminate inflammation and promote its resolution. By means of high-troughput transcritomic analysis we identified a cytokine-related molecular signature in obese omental adipose tissue, characterized by a remarkable overexpression of interleukin (IL)-6, IL-1 and IL-10 associated with a concomitant increase in macrophage infiltration, which gradually increased in a body mass index-dependent manner.

Publication Title

Signaling and Immunoresolving Actions of Resolvin D1 in Inflamed Human Visceral Adipose Tissue.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon SRP035479
Expression profile by RNA-seq of wild type or Caenorhabditis elegans mutant for the Werner syndrome gene ortholog treated with or without vitamin C
  • organism-icon Caenorhabditis elegans
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

In this study, we analyzed the impact of a mutation in the wrn-1 gene compared to wild type worms and the dietary supplementation of vitamin C on the global mRNA expression of the whole C. elegans by the RNA-seq technology. Overall design: Whole C. elegans mRNA profiles at the L4 stage of wild type and wrn-1(gk99) mutant animals treated with or without 10 mM ascorbate were generated by deep sequencing, in triplicate, using the HiSeq 2000 machine form Illumina. Detailed statistics on the quality of the reads were calculated with FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The 50 base pairs raw sequences were aligned on the C. elegans ce10/W220 genome with TopHat using the Ensembl annotations provided with the Illumina iGenomes. The htseq-count software (http://www-huber.embl.de/users/anders/HTSeq) was used to count the number of reads aligned to each gene. These counts were then normalized relative to the sequencing depth with DESeq.

Publication Title

Expression profile of Caenorhabditis elegans mutant for the Werner syndrome gene ortholog reveals the impact of vitamin C on development to increase life span.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact