refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 88 results
Sort by

Filters

Technology

Platform

accession-icon GSE16844
Integrated pathways for neutrophil recruitment and inflammation in leprosy
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Neutrophil recruitment is pivotal to host defense against microbial infection, but also contributes to the immunopathology of disease. We investigated the mechanism of neutrophil recruitment in human infectious disease by bioinformatic pathways analysis of the gene expression profiles in the skin lesions of leprosy. In erythema nodosum leprosum (ENL), which occurs in patients with lepromatous leprosy (L-lep), and is characterized by neutrophil infiltration in lesions, the most overrepresented biologic functional group was 'cell movement' including E-selectin, which was coordinately regulated with IL-1beta. In vitro activation of TLR2, upregulated in ENL lesions, triggered induction of IL-1beta, which together with IFN-gamma, induced E-selectin expression on, and neutrophil adhesion to endothelial cells. Thalidomide, an effective treatment for ENL, inhibited this neutrophil recruitment pathway. The gene expression profile of ENL lesions comprised an integrated pathway of TLR2/FcR activation, neutrophil migration and inflammation, providing insight into mechanisms of neutrophil recruitment in human infectious disease.

Publication Title

Integrated pathways for neutrophil recruitment and inflammation in leprosy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP090396
Exploiting drug addiction mechanisms to select against MAPKi resistant melanoma
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Melanoma resistant to MAPK inhibitors (MAPKi) displays loss of fitness upon experimental MAPKi withdrawal and, clinically, may be resensitized to MAPKi therapy after a drug holiday. Here, we uncovered and therapeutically exploited the mechanisms of MAPKi addiction in MAPKi-resistant BRAF MUT or NRAS MUT melanoma. MAPKi-addiction phenotypes evident upon drug withdrawal spanned transient cell-cycle slowdown to cell-death responses, the latter of which required a robust phosphorylated ERK (pERK) rebound. Generally, drug withdrawal–induced pERK rebound upregulated p38–FRA1–JUNB–CDKN1A and downregulated proliferation, but only a robust pERK rebound resulted in DNA damage and parthanatos-related cell death. Importantly, pharmacologically impairing DNA damage repair during MAPKi withdrawal augmented MAPKi addiction across the board by converting a cell-cycle deceleration to a caspase-dependent cell-death response or by furthering parthanatos related cell death. Specifically in MEKi-resistant NRAS MUT or atypical BRAF MUT melanoma, treatment with a type I RAF inhibitor intensified pERK rebound elicited by MEKi withdrawal, thereby promoting a cell death–predominant MAPKi-addiction phenotype. Thus, MAPKi discontinuation upon disease progression should be coupled with specific strategies that augment MAPKi addiction. Overall design: BRAF/MEK inhibitors resistant cell lines M249DDR5 and SKMEL28DDR1 were assayed for their responses after 6 hr of BRAF/MEK inhibitor treatment and after inhibitors withdrawal (by washin) for 6 and 24 hours

Publication Title

Exploiting Drug Addiction Mechanisms to Select against MAPKi-Resistant Melanoma.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE75313
Expression changes in Melanomas pre MAPKi treatment vs. on MAPKi treatment
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Recurrent Tumor Cell-Intrinsic and -Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP066571
Expression changes in Melanomas pre MAPKi treatment vs. on MAPKi treatment (RNA-seq)
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Treatment of advanced V600BRAF mutant melanoma using a BRAF inhibitor (BRAFi) or its combination with a MEKi typically elicits partial responses. We compared the transcriptomes of patient-derived tumors regressing on MAPKi therapy against MAPKi-induced temporal transcriptomic states in human melanoma cell lines or murine melanoma in immune-competent mice. Despite heterogeneous dynamics of clinical tumor regression, residual tumors displayed highly recurrent transcriptomic alterations and enriched processes, which were also observed in MAPKi-selected cell lines (implying tumor cell-intrinsic reprogramming) or in bulk mouse tumors (and the CD45-negative or -positive fractions,, implying tumor cell-intrinsic or stromal/immune alterations, respectively). Tumor cell-intrinsic reprogramming attenuated MAPK-dependency, while enhancing mesenchymal, angiogenic and IFN-inflammatory features and growth/survival dependence on multi-RTKs and PD-L2. In the immune compartment, PD-L2 upregulation in CD11c+ immunocytes drove the loss of T-cell inflammation and promoted BRAFi resistance. Thus, residual melanoma early on MAPKi therapy already displays potentially exploitable adaptive transcriptomic, epigenomic, immune-regulomic alterations. Overall design: Paired melanoma biopsies/cell lines before treatment, during treatment and after resistance to MAPKi were sent for transcriptomic analysis by paired end 2x100bp HiSeq 2000 RNAseq analysis

Publication Title

Recurrent Tumor Cell-Intrinsic and -Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE75311
Expression changes in Melanomas pre MAPKi treatment vs. on MAPKi treatment (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Treatment of advanced V600BRAF mutant melanoma using a BRAF inhibitor (BRAFi) or its combination with a MEKi typically elicits partial responses. We compared the transcriptomes of patient-derived tumors regressing on MAPKi therapy against MAPKi-induced temporal transcriptomic states in human melanoma cell lines or murine melanoma in immune-competent mice. Despite heterogeneous dynamics of clinical tumor regression, residual tumors displayed highly recurrent transcriptomic alterations and enriched processes, which were also observed in MAPKi-selected cell lines (implying tumor cell-intrinsic reprogramming) or in bulk mouse tumors (and the CD45-negative or -positive fractions,, implying tumor cell-intrinsic or stromal/immune alterations, respectively). Tumor cell-intrinsic reprogramming attenuated MAPK-dependency, while enhancing mesenchymal, angiogenic and IFN-inflammatory features and growth/survival dependence on multi-RTKs and PD-L2. In the immune compartment, PD-L2 upregulation in CD11c+ immunocytes drove the loss of T-cell inflammation and promoted BRAFi resistance. Thus, residual melanoma early on MAPKi therapy already displays potentially exploitable adaptive transcriptomic, epigenomic, immune-regulomic alterations.

Publication Title

Recurrent Tumor Cell-Intrinsic and -Extrinsic Alterations during MAPKi-Induced Melanoma Regression and Early Adaptation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22269
Expression data from Saccharomyces cerevisiae treated with Small Molecule Enhancers of Rapamycin (SMERs)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control. With prevalent hyper-activation of the mTOR pathway in human cancers, novel strategies to enhance TOR pathway inhibition are highly desirable.

Publication Title

Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE97306
Differential miRNA and mRNA Expression in Immortalized Human Keratinocytes (HaCaT) after Low Arsenic Exposure
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene Expression Array (primeview)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Differentially Expressed mRNA Targets of Differentially Expressed miRNAs Predict Changes in the TP53 Axis and Carcinogenesis-Related Pathways in Human Keratinocytes Chronically Exposed to Arsenic.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon SRP133356
Maternal Plag1 deficiency delays two-cell stage embryo development and embryonic genome activation [Embryos]
  • organism-icon Mus musculus
  • sample-icon 90 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Pleomorphic adenoma gene 1 (PLAG1) encodes a transcription factor involved in cancer and growth. We study the role of PLAG1 in preimplantation embryos using STRT RNA-seq of single embryos from wild type and knockout mothers (both mated with wild type studs). The lack of maternal Plag1 led to delayed mouse 2-cell stage embryo development, compensatory expression of Plag1 from the paternal allele, and dysregulation of 1,089 genes. Half of these genes displayed a pattern of delayed activation and play roles in ribosome biogenesis and protein synthesis. These mouse genes further showed a significant overlap with human EGA genes with similar ontology, and an enrichment of the PLAG1 de novo motif. We conclude that Plag1 affects EGA through retrotransposons influencing ribosomes and protein synthesis, a mechanism that might also explain its roles in cancer and growth Overall design: Single wild type and maternal Plag1 knockout embryos at MII, 2-cell and 8-cell stage development in 14-16 biologicla replicas per developmental stage and genotype.

Publication Title

Pleomorphic Adenoma Gene 1 Is Needed For Timely Zygotic Genome Activation and Early Embryo Development.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE34232
Expression data from wildtype, MIST1-null, and induced MIST1 Mus musculus pancreata
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Although early developmental processes involve cell fate decisions that define the body axes and establish progenitor cell pools, development does not cease once cells are specified. Instead, most cells undergo specific maturation events where changes in the cell transcriptome ensure that the proper gene products are expressed to carry out unique physiological functions. Pancreatic acinar cells mature post-natally to handle an extensive protein synthetic load, establsih organized apical-basal polarity for zymogen granule trafficking, and assemble gap-junctions to perimt efficient cell-cell communication. Despite significant progress in defining transcriptional networks that control initial acinar cell specification and differentiation decisions, little is know regarding the role of transcription factors in the specification and maintenance of maturation events. One candidate maturation effector is MIST1, a secretory cell-restricted transcription factor that has been implicated in controlling regulated exocytosis events in a number of cell types. Embryonic knock-out of MIST1 generates acinar cells that fail to establish an apical-basal organization, fail to properly localize zymogen granule and fail to communicate intra-cellularly, making the exocrine organ highly suceptible to pancreatic diseases.

Publication Title

Induced Mist1 expression promotes remodeling of mouse pancreatic acinar cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE100431
Pharmacodynamics, Safety, and Clinical Efficacy of AMG 811, a Human Anti-Interferon- Antibody, in Patients With Discoid Lupus Erythematosus
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Brief Report: Pharmacodynamics, Safety, and Clinical Efficacy of AMG 811, a Human Anti-Interferon-γ Antibody, in Patients With Discoid Lupus Erythematosus.

Sample Metadata Fields

Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact