refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 311 results
Sort by

Filters

Technology

Platform

accession-icon SRP043160
Effect of SF3A1 inhibition on pre-mRNA splicing
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We previously found that the SF3A mRNA splicing complex was required for a robust innate immune response; SF3A acts in part by inhibiting the production of a negatively acting splice form of the TLR signaling adaptor MyD88. Here we inhibit SF3A1 using RNAi and subsequently perform an RNAseq study to identify the full complement of genes and splicing events regulated by SF3A in murine macrophages. Surprisingly, SF3A has substantial specificity for mRNA splicing events in innate immune signaling pathways compared to other pathways, affecting the splicing of many genes in the TLR signaling pathway to modulate the innate immune response. Overall design: RNAseq was used to monitor the effects of SF3A1 siRNA-mediated knockdown in murine macrophages. Three biological replicates were used for each of the four treatment combinations (with/without siRNA, with/without LPS). The first replicates for each combination were each sequenced in two runs, which were combined in the analysis.

Publication Title

Regulation of toll-like receptor signaling by the SF3a mRNA splicing complex.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP070751
Analysis of gene-expression in normal, unmanipulated na誰ve (CD44lo/CD49dlo; CD5lo/CD5hi) and Virtual memory (CD44hi/CD49dlo) T cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Splenocytes from lymphoreplete, unmanipulated mice were analyzed for basal mRNA levels. We hypothesized, based on previous data from our lab and others, that many cytokine/inflammatory response genes would show an increase from na誰ve CD5lo<CD5hi<Virtual memory. Overall design: mRNA was analyzed from mouse splenocytes separated into na誰ve CD5lo, na誰ve CD5hi, and virtual memory cells. Mice were lymphoreplete and unmanipulated.

Publication Title

Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP067636
Integration of RNA-seq transcriptomics with metabolomics in mouse model of cigarette smoke exposure
  • organism-icon Mus musculus
  • sample-icon 248 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Chronic obstructive pulmonary disease (COPD), a leading cause of morbidity and mortality, is primarily caused by prolonged exposures to cigarette smoke (CS) and the disease may persist or progress even after smoking cessation. To provide novel insight the mechanisms of COPD development we investigated temporal patterns of lung transcriptome expression in response to chronic CS exposure that also persist following CS cessation, using next generation sequencing techniques. Whole lung RNA-seq data was analyzed from C57Bl/6 mice exposed to CS for 1 day, 7 days, 1 month, 3 months, 6 months, and 9 months as well as for 6 months followed by 3 months of cessation. Age-matched littermate mice exposed to ambient air were used as control (AC). Differential gene expression and pathway analyses revealed consistent upregulation of genes involved in glutathione metabolism, a pathway previously implicated in lung responses to chronic CS and in COPD, that was reversible upon cessation. In addition, novel patterns in mouse-model pathways such as pyrimidine metabolism and phosphatidylinositol signaling system and have been recognized. Genes in these pathways encoding for enzymes controlling metabolic functions were significantly altered by CS exposures and were associated with congruent abnormalities in contemporaneous plasma metabolomic profiles. The bioinformatics integration of lung tissue genomics and plasma metabolomics uncovered that changes in lung gene expression induced by CS exposures are translated in systemic metabolic signatures, with potential implication in the development of COPD. Overall design: Whole transcriptome profiling of air control vs cigarette smoke-exposed mice at each of 6 timepoints from 1 day to 9 months of exposure, including a stop smoking group exposed to 6 months of CS followed by 3 months of ambient air recovery. Each treatment-by-time experimental group contains 5 biological replicates. 3 samples were discarded for quality reasons.

Publication Title

Gene and metabolite time-course response to cigarette smoking in mouse lung and plasma.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject, Time

View Samples
accession-icon SRP098047
Characterization of murine pulmonary interstitial macrophages at steady state
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

In this study we demonstrate that the lung mononuclear phagocyte system comprises three interstitial macrophages (IMs), as well as alveolar macrophages (AMs), dendritic cells and few extravascular monocytes. Through cell sorting and RNAseq analysis we were able to identify transcriptional similarities and differences between the three pulmonary IM subtypes, with reference to the more well-characterized alveolar macrophage Overall design: Pulmonary Interstitial and Alveolar macrophages were FACS sorted from the lungs of steady state 8-10 week old B6 mice, in triplicate. Extracted RNA was examined by RNAsequencing. The tar archive GSE94135_jakubzick_2019*tar available at the foot of this page contains the supplementary processed data used for comparisons with data in GSE132911. Data were processed as described in GSE132911.

Publication Title

Three Unique Interstitial Macrophages in the Murine Lung at Steady State.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP099085
Comparing murine lung resident alveolar Siglec-F(high) macrophages to CD11b(high) macrophages following bleomycin injury
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Macrophages (MF) have been shown to contribute to fibrogenesis, however the underlying mechanisms and specific MF subsets involved remain unclear. Lung MF can be divided into two subsets: Siglec-Fhi resident alveolar MF and CD11bhi MF that primarily arise from immigrating monocytes. RNA-seq analysis was performed to compare these MF subsets during fibrosis. CD11bhi MF, not Siglec-Fhi MF, expressed high levels of pro-fibrotic chemokines and growth factors. Overall design: C56BL/6 WT mice were treated intratracheally with bleomycin. 8 days later, CD64+Mertk+ MF were sorted into Siglec-F(high) and CD11b(high) subsets. SiglecF(high) MF from naïve mice were also sorted. RNA was isolated and RNA-seq was performed to compare MF subsets.

Publication Title

Deletion of c-FLIP from CD11b<sup>hi</sup> Macrophages Prevents Development of Bleomycin-induced Lung Fibrosis.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE68892
caArray_geral-00143: An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen
  • organism-icon Homo sapiens
  • sample-icon 104 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Clinical heterogeneity of esrtrogen receptor-negative, progesterone receptor-negative [ER(-)/PR(-)] breast cancer (BC) suggests biological heterogeneity. We performed gene expression analysis of primary BCs and BC cell lines to identify the underlying biology of ER(-)/PR(-) disease, define subsets, and identify potential therapeutic targets.

Publication Title

An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon GSE51615
Expression data from rhesus macaque colon, jejunum, and lung
  • organism-icon Macaca mulatta
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

The mucosa that lines the respiratory and gastrointestinal (GI) tracts is an important portal of entry for pathogens and provides the frontline of immune defense against HIV infection. Using the simian immunodeficiency virus (SIV) rhesus macaque model, we have performed a comparative analysis of host gene expression in the lung and GI mucosa in response to SIV infection and antiretroviral therapy.

Publication Title

Enhanced innate antiviral gene expression, IFN-α, and cytolytic responses are predictive of mucosal immune recovery during simian immunodeficiency virus infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE51445
Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection
  • organism-icon Macaca mulatta, Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE51436
Expression data from rhesus macaque tongue
  • organism-icon Macaca mulatta
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE51438
Expression data from rhesus macaque tongue epithelium
  • organism-icon Macaca mulatta
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A majority of individuals infected with human immunodeficiency virus (HIV) have inadequate access to antiretroviral therapy and ultimately develop debilitating oral infections that often correlate with disease progression. Our study evaluates the potential of simian immunodeficiency virus (SIV) infected rhesus macaques to serve as a non-human primate model for oral manifestations of HIV disease.

Publication Title

Transcription profiling reveals potential mechanisms of dysbiosis in the oral microbiome of rhesus macaques with chronic untreated SIV infection.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact