TRF2 is a paralogue of TATA-box binding protein (TBP) with highest expression in testis. Although Trf2 inactivation in mice leads to arrested spermatogenesis, there is no direct evidence that Trf2 is recruited to chromatin to directly regulate gene expression. We used genetically modified mice where endogenous Trf2 has been modified to carry a TAP-TAG to perform ChIP-reChIP followed by deep sequencing. We found that Trf2 is recruited to all active promoters as a subunit of TFIIA/ALF complex together with TBP. To assess the effect of Trf2 inactivation on gene expression we performed RNA-seq on WT and Trf2-/- testes at 21 days of age when haploid cell gene expression is activated. Overall design: The testes from three 21 day old WT and three Trf2-/- males were taken to prepare total RNAs for deep sequencing.
TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression.
Specimen part, Subject
View SamplesMelanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment. In addition to conventional therapy, melanoma treatment is currently based on targeting the BRAF/MEK/ERK signaling pathway and immune checkpoints. As drug resistance remains a major obstacle to treatment success, advanced therapeutic approaches based on novel targets are still urgently needed. We reasoned that the base excision repair enzyme Thymine DNA Glycosylase (TDG) could be such a target for its dual role in safeguarding the genome and the epigenome, by performing the last of the multiple steps in DNA demethylation. Overall design: Six samples : cells treated with shTDG and cells treated with shControl both in triplicates.
Thymine DNA glycosylase as a novel target for melanoma.
Cell line, Treatment, Subject
View Samplesd-serine is naturally present throughout the human body. It is also used as add-on therapy for treatment-refractory schizophrenia. d-Serine interacts with the strychnine-insensitive glycine binding site of NMDA receptor, and this interaction could lead to potentially toxic activity (i.e., excitotoxicity) in brain tissue. The transcriptomic changes that occur in the brain after d-serine exposure have not been fully explored.
D-Serine exposure resulted in gene expression changes implicated in neurodegenerative disorders and neuronal dysfunction in male Fischer 344 rats.
Sex
View SamplesAbnormal activities of histone lysine demethylases (KDMs) and lysine deacetylases (HDACs) are associated with aberrant gene expression in breast cancer development. However, the precise molecular mechanisms underlying the crosstalk between KDMs and HDACs in chromatin remodeling and regulation of gene transcription are still elusive. In this study, we showed that treatment of human breast cancer cells with inhibitors targeting the zinc cofactor dependent class I/II HDACs, but not NAD+ dependent class III HDACs, led to significant increase of H3K4me2 which is a specific substrate of histone lysine-specific demethylase 1 (LSD1) and a key chromatin mark promoting transcriptional activation. We also demonstrated that inhibition of LSD1 activity by a pharmacological inhibitor, pargyline, or siRNA resulted in increased acetylation of H3K9 (AcH3K9). However, siRNA knockdown of LSD2, a homolog of LSD1, failed to alter the level of AcH3K9, suggesting that LSD2 activity may not be functionally connected with HDAC activity. Combined treatment with LSD1 and HDAC inhibitors resulted in enhanced levels of H3K4me2 and AcH3K9, and exhibited synergistic growth inhibition of breast cancer cells. Finally, microarray screening identified a unique subset of genes whose expression was significantly changed by combination treatment with inhibitors of LSD1 and HDAC. Our study suggests that LSD1 intimately interacts with histone deacetylases in human breast cancer cells. Inhibition of histone demethylation and deacetylation exhibits cooperation and synergy in regulating gene expression and growth inhibition, and may represent a promising and novel approach for epigenetic therapy of breast cancer.
Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells.
Specimen part, Cell line
View SamplesInduced pluripotent stem cell-derived human hepatocyte-like cells (iHeps) could provide a powerful tool for studying the mechanisms underlying human liver development and disease, testing the efficacy and safety of pharmaceuticals across different patients (i.e. personalized medicine), and enabling cell-based therapies in the clinic. However, current in vitro protocols that rely upon growth factors and extracellular matrices (ECM) alone yield iHeps with low levels of liver functions relative to adult primary human hepatocytes (PHHs). Moreover, these low hepatic functions in iHeps are difficult to maintain for prolonged times (weeks to months) in culture. Here, we engineered a micropatterned co-culture (iMPCC) platform in a multi-well format that, in contrast to conventional confluent cultures, significantly enhanced the functional maturation and longevity of iHeps in culture for 4 weeks in vitro when benchmarked against multiple donors of PHHs. In particular, iHeps were micropatterned onto collagen-coated domains of empirically optimized dimensions, surrounded by 3T3-J2 murine embryonic fibroblasts, and then sandwiched with a thin layer of ECM gel (Matrigel). We assessed iHep maturity via global gene expression profiles, hepatic polarity, secretion of albumin and urea, basal CYP450 activities, phase-II conjugation, drug-mediated CYP450 induction, and drug-induced hepatotoxicity. Conclusion: Controlling both homotypic interactions between iHeps and heterotypic interactions with stromal fibroblasts significantly matures iHep functions and maintains them for several weeks in culture. In the future, iMPCCs could prove useful for drug screening, studying molecular mechanisms underlying iHep differentiation, modeling liver diseases, and integration into human-on-a-chip systems being designed to assess multi-organ responses to compounds.
Enhancing the functional maturity of induced pluripotent stem cell-derived human hepatocytes by controlled presentation of cell-cell interactions in vitro.
Specimen part, Subject
View SamplesWe report that WT1 transcriptional repressor protein BASP1 interacts with oestrogen receptor alpha (Era), and interaction which in enhanced in the presence of Tamoxifen. We utilised RNASeq to identify common BASP1 and ERa target genes as well as Tamoxifen responsive genes that are altered in the absence of BASP1. Overall design: Total mRNA sequencing analysis of MCF7 cells treated with either siRNA against BASP1 or negative control siRNA, with and without Tamoxifen treatment. Each experiment was performed in triplicate.
BASP1 interacts with oestrogen receptor α and modifies the tamoxifen response.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
Specimen part, Cell line, Treatment
View SamplesChromatin remodelling provides a key mechanism for the regulation of gene expression through dynamic alterations in nucleosome occupancy at promoters and enhancers. Haploinsufficiency for the ATP-dependent chromatin remodeller chromodomain-helicase-DNA-binding protein 7 (CHD7) causes human CHARGE syndrome. CHARGE is characterised by a distinct pattern of congenital anomalies, including cardiovascular malformations, and has traditionally been considered a neurocristopathy. We present a new perspective, by showing severe structural cardiovascular defects following ablation of Chd7 in the anterior mesoderm and other cardiac-related lineages. We identify multiple downstream pathways affected by the loss of Chd7 and disruption of excitation-contraction coupling in cardiomyocytes. Furthermore, we demonstrate CHD7 binding at the Sema3C promoter and alterations to the local chromatin structure in vivo, indicating direct transcriptional regulation. This work therefore provides novel insights into the etiology of heart defects arising in CHARGE syndrome and reveals a requirement for CHD7 activity in mesodermal cardiac progenitors.
A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development.
Specimen part
View SamplesWe sorted Eomes-negative NK cells (CD3- CD56+ CXCR6- CD16-) and Eomes-positive NK cells (CD3- CD56+ CXCR6+) from total leukocytes isolated from the perfusion fluid of five healthy human livers destined for transplantation. Total RNA was extracted from sorted cells, cDNA generated and RNASeq performed. Overall design: Examination of mRNA levels in paired Eomes-negative/Eomes-positive NK cells from the same donor.
Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation.
Specimen part, Subject
View SamplesThe RNA samples from HT-29 (ATCC) colon cancer cell line were reverse transcribed into cDNAs and categorized in 3 groups with different concentrations of 5-aza-deoxy-cytidine (5-Aza); in each group three replicative 150 mm cultures were treated with: 1) dimethyl sulfoxide (vehicle alone, 0 M 5-Aza); 2) 5M 5-Aza and 3) 10 M 5-Aza; for five days
Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
Specimen part, Cell line, Treatment
View Samples