To assess in vitro derived podocytes, we examined the transcriptional changes during human podocyte development and applied that knowledge to pinpoint strengths and limitations of hESC-derived podocytes. Overall design: We performed transcriptionaling profiling of kidney organoids and organoid-derived MAFB-eGFP+ podocytes at various differentiation time points.
In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes.
Subject
View SamplesIn order to characterize and benchmark the podocytes-like cells generated through human ES cell differentiation, we generated transcriptional profiles of renal corpuscles from embryonic human kidneys using RNA-Seq. To compare, we also performed RNA-Seq of human immortalized podocyte cell lines before and after thermoswitch. Overall design: We performed RNA-Seq of poly-A selected RNA from hESC-derived kidney organoids, organoid-derived MAFB-eGFP+ podocytes at different time points, and human immortalized podocytes.
In Vivo Developmental Trajectories of Human Podocyte Inform In Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes.
Specimen part, Subject
View SamplesSandhoff disease, one of the GM2 gangliosidoses, is a lysosomal storage disorder characterized by the absence of b-hexosaminidase A and B activity and the concomitant lysosomal accumulation of its substrate, GM2 ganglioside. It features catastrophic neurodegeneration and death in early childhood. How the lysosomal accumulation of ganglioside might affect the early development of the nervous system is not understood. Recently, cerebral organoids derived from induced pluripotent stem (iPS) cells have illuminated early developmental events altered by disease processes. To develop an early neurodevelopmental model of Sandhoff disease, we first generated iPS cells from the fibroblasts of an infantile Sandhoff disease patient, then corrected one of the mutant HEXB alleles in those iPS cells with CRISPR/Cas9 genome-editing technology, thereby creating isogenic controls. Next, we used the parental Sandhoff disease iPS cells and isogenic HEXB-corrected iPS cell clones to generate cerebral organoids that modeled the first trimester of neurodevelopment. The Sandhoff disease organoids but not the HEXB-corrected organoids accumulated GM2 ganglioside, and exhibited increased size and cellular proliferation compared with the HEXB-corrected organoids. Whole-transcriptome analysis demonstrated that development was impaired in the Sandhoff disease organoids, suggesting that alterations in neuronal differentiation may occur during early development in the GM2 gangliosidoses Overall design: Sandhoff disease and corrected cerebral organoids grown for 8 and 10 weeks were analyzed: four samples at each time point, each consisting of 4–6 pooled organoids, for both Sandhoff and corrected. Whole transcriptome from Sandhoff disease and corrected organoids for both time points were generated by deep sequencing on an Illumina HiSeq 2500.
Cerebral organoids derived from Sandhoff disease-induced pluripotent stem cells exhibit impaired neurodifferentiation.
Specimen part, Subject
View SamplesMicroarray based mRNA profiling was used to identify the mechanism of action for the small molecule VLX600.
Iron chelators target both proliferating and quiescent cancer cells.
Disease, Cell line, Treatment
View SamplesThese data provide a basis for exploration of gene expression differences between physiologically extreme accessions of Arabidopsis thaliana.
Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.
Specimen part, Treatment
View SamplesThese data provide a basis for the detection of sequence based polymorphisms between the Col-1, Tsu-1, and Kas-1 accessions of Arabidopsis thaliana. The experimental data provides an initial characterization of differences among the accessions, as well as a means for improving gene expression studies with the filtering of SFP from arrays studies.
Exploring genetic and expression differences between physiologically extreme ecotypes: comparative genomic hybridization and gene expression studies of Kas-1 and Tsu-1 accessions of Arabidopsis thaliana.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.
Sex, Cell line, Treatment
View SamplesMitochondrial dysfunction is a common feature in neurodegeneration and aging. We identify mitochondrial dysfunction in xeroderma pigmentosum group A (XPA), a nucleotide excision DNA repair disorder with severe neurodegeneration, in silico and in vivo. XPA deficient cells show defective mitophagy with excessive cleavage of PINK1 and increased mitochondrial membrane potential. The mitochondrial abnormalities appear to be caused by decreased activation of the NAD+-SIRT1-PGC-1 axis triggered by hyperactivation of the DNA damage sensor PARP1. This phenotype is rescued by PARP1 inhibition or by supplementation with NAD+ precursors that also rescue the lifespan defect in xpa-1 nematodes. Importantly, this pathogenesis appears common to ataxia-telangiectasia and Cockayne syndrome, two other DNA repair disorders with neurodegeneration, but absent in XPC, a DNA repair disorder without neurodegeneration. Our findings reveal a novel nuclear-mitochondrial cross-talk that is critical for the maintenance of mitochondrial health.
Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction.
Sex, Treatment
View SamplesAberrant forms of the SWI/SNF chromatin remodeling complex are associated with human disease. Loss of the Snf5 subunit of SWI/SNF is a driver mutation in pediatric rhabdoid cancers and forms aberrant sub-complexes that are not well characterized. We determined the effects of loss of Snf5 on the composition, nucleosome binding, recruitment and remodeling activities of yeast SWI/SNF. The Snf5 subunit interacts with the ATPase domain of Snf2 and forms a submodule consisting of Snf5, Swp82 and Taf14 as shown by mapping SWI/SNF subunit interactions by crosslinking-mass spectrometry and subunit deletion followed by immunoaffinity chromatography. Snf5 promoted binding of the Snf2 ATPase domain to nucleosomal DNA, enhanced its catalytic activity and facilitated nucleosome remodeling. Snf5 was required for acidic transcription factors to recruit SWI/SNF to chromatin. RNA-seq analysis suggested that both the recruitment and catalytic functions mediated by Snf5 are required for SWI/SNF regulation of gene expression. Overall design: Determining the effects of loss of Snf5 on the composition, nucleosome binding, recruitment, remodeling activities and gene expression profile of yeast SWI/SNF
Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex.
Cell line, Subject
View SamplesElevated branched chain amino acids (BCAAs) are associated with obesity and insulin resistance. How long-term dietary BCAAs impact late-life health and lifespan is unknown. Here, we show that when dietary BCAAs are varied against a fixed, isocaloric macronutrient background, long-term exposure to high BCAA diets led to hyperphagia, obesity and reduced lifespan. These effects were not due to elevated BCAA per se or hepatic mTOR activation, but rather the shift in balance between dietary BCAAs and other AAs, notably tryptophan and threonine. Increasing the ratio of BCAAs to these AAs resulted in hyperphagia and was linked to central serotonin depletion. Preventing hyperphagia by calorie restriction or pair-feeding averted the health costs of a high BCAA diet. Our data highlight a role for amino acid quality in energy balance and show that health costs of chronic high BCAA intakes were not due to intrinsic toxicity; rather, to hyperphagia driven by AA imbalance. Overall design: 3 animals per sex per diet were used. Mice were fed one of four diets (all 19% total protein, 63% carbohydrate, 18% fat, total energy density 14 kJ/g) varying in BCAA content (BCAA200: twice BCAA content of control diet AIN93G; BCAA100: standard content of BCAAs; and BCAA50 and BCAA20: containing one half and one fifth of standard content of BCAAs), and either euthanized at 15 months of age or maintained for determination of lifespan.
Branched chain amino acids impact health and lifespan indirectly via amino acid balance and appetite control.
Sex, Age, Specimen part, Cell line, Subject
View Samples