refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 119 results
Sort by

Filters

Technology

Platform

accession-icon GSE27031
The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The MuvB complex sequentially recruits B-Myb and FoxM1 to promote mitotic gene expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP069968
mRNA-seq from Nutlin-3a, doxorubicin, and DMSO treated HCT116 p21-/- cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconNextSeq500

Description

We sequenced mRNA from HCT116 p21-/- cells treated with Nutlin-3a, doxorubicin, or DMSO for 24 h. Overall design: Examination of mRNA levels from HCT116 p21-/- cells treated with Nutlin-3a, doxorubicin, or DMSO for 24 h using four replicates each.

Publication Title

Integration of TP53, DREAM, MMB-FOXM1 and RB-E2F target gene analyses identifies cell cycle gene regulatory networks.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072919
Merkel cell polyomavirus small T antigen promotes pro-glycolytic metabolic perturbations required for transformation
  • organism-icon Homo sapiens
  • sample-icon 77 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Merkel cell polyomavirus (MCPyV) is an etiological agent of Merkel cell carcinoma (MCC), a highly aggressive skin cancer. The MCPyV small tumor antigen (ST) is required for maintenance of MCC and can transform normal cells. To gain insight into cellular perturbations induced by MCPyV ST, we performed transcriptome analysis of normal human fibroblasts with inducible expression of ST. MCPyV ST dynamically alters the cellular transcriptome with increased levels of glycolytic genes, including the monocarboxylate lactate transporter SLC16A1 (MCT1). Extracellular flux analysis revealed increased lactate export reflecting elevated aerobic glycolysis in ST expressing cells. Inhibition of MCT1 activity suppressed the growth of MCC cell lines and impaired MCPyV-dependent transformation of IMR90 cells. Both NF-?B and MYC have been shown to regulate MCT1 expression. While MYC was required for MCT1 induction, MCPyV-induced MCT1 levels decreased following knockdown of the NF-?B subunit RelA, supporting a synergistic activity between MCPyV and MYC in regulating MCT1 levels. Several MCC lines had high levels of MYCL and MYCN but not MYC. Increased levels of MYCL was more effective than MYC or MYCN in increasing extracellular acidification in MCC cells. Our results demonstrate the effects of MCPyV ST on the cellular transcriptome and reveal that transformation is dependent, at least in part, on elevated aerobic glycolysis. Overall design: Expression of MCPyV ST or GFP was induced in IMR90 fibroblasts, and triplicate RNA samples were extracted and sequenced every 8 hours for a total of 96 hours

Publication Title

Merkel Cell Polyomavirus Small T Antigen Promotes Pro-Glycolytic Metabolic Perturbations Required for Transformation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE8537
Gene expression profilie during cell cycle in T98G cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The mammalian Retinoblastoma (RB) family including pRB, p107, and p130 represses E2F target genes through mechanisms that are not fully understood. In D. melanogaster, RB-dependent repression is mediated in part by the multisubunit protein complex Drosophila RBF, E2F, and Myb (dREAM) that contains homologs of the C. elegans synthetic multivulva class B (synMuvB) gene products. Using an integrated approach combining proteomics, genomics, and bioinformatic analyses, we identified a p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) that contains mammalian homologs of synMuvB proteins LIN-9, LIN-37, LIN-52, LIN-54, and LIN-53/RBBP4. DREAM bound to more than 800 human promoters in G0 and was required for repression of E2F target genes. In S phase, MuvB proteins dissociated from p130 and formed a distinct submodule that bound MYB. This work reveals an evolutionarily conserved multisubunit protein complex that contains p130 and E2F4, but not pRB, and mediates the repression of cell cycle-dependent genes in quiescence.

Publication Title

Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059494
EP400 is required for Max and MCPyV mediated gene activation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

To determine if EP400 knockdown would affect Max target genes in Merkel cell carcinoma cell line MKL-1, we performed RNA-seq analyses of MKL-1 cells inducibly expressing EP400 shRNA and compared to ChIP-seq data using BETA analyses. Overall design: EP400 was inducibly reduced with shRNA in MKL-1 cells to analyze gene regulation.

Publication Title

Merkel cell polyomavirus recruits MYCL to the EP400 complex to promote oncogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE40567
Transcriptional perturbations caused by SV40 large T antigen and its fragments
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The small genome of polyomaviruses encodes a limited number of proteins that are highly dependent on interactions with host cell proteins for efficient viral replication. The SV40 large T antigen (LT) contains several discrete functional domains that contribute to the viral life cycle, including the DNA binding and helicase domains. In addition, the LT the C-terminal region is required for lytic infection in certain restrictive cell types. To understand how LT affects the host cell to facilitate viral replication, we expressed full-length or functional domains of LT in cells and identified interacting cellular proteins and performed expression profiling. LT perturbed the expression of p53 target genes and subsets of cell-cycle dependent genes regulated by the DREAM and the B-Myb-MuvB complexes.

Publication Title

Identification of FAM111A as an SV40 host range restriction and adenovirus helper factor.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP169553
A genetic murine model of CLL based on B cell-restricted expression of Sf3b1 mutation and Atm deletion
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

The RNA splicing factor SF3B1 is recurrently mutated in chronic lymphocytic leukemia (CLL), but its functional role in the pathogenesis of this disease has not been firmly established. Here, we show that conditional expression of heterozygous Sf3b1-K700E mutation in mouse B lineage cells disrupts pre-mRNA splicing, alters B-cell development and function, and induces a state of cellular senescence. B-cell restricted expression of this mutation combined with Atm deletion led to the overcoming of cellular senescence, together with enhanced genome instability and the development of clonal B220+CD5+ CLL cells in elderly mice at low penetrance. Mice with CLL-like disease were found to have amplifications of chromosomes 15 and 17. Integrated transcriptome and proteome analysis of the CLL-like cells revealed coordinated dysregulation of multiple CLL-associated cellular processes. This included an unexpected signature of deregulated B-cell receptor (BCR) signaling, which we could also identify in SF3B1-mutated CLL samples from two independent patient cohorts. Notably, human CLLs harboring SF3B1 mutations exhibited greater sensitivity and altered response kinetics to BTK kinase ibrutinib. Our genetically faithful murine model of CLL thus reveals fresh insights regarding the impact of SF3B1 mutation on CLL pathogenesis and suggests a system for identifying vulnerabilities related to this mutation that can be further exploited for the treatment of CLLs with this common mutation. Overall design: RNA-seq of B cells from WT, Sf3b1 MT, Atm MT, DM and DM-CLL mice

Publication Title

A Murine Model of Chronic Lymphocytic Leukemia Based on B Cell-Restricted Expression of Sf3b1 Mutation and Atm Deletion.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP174621
Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes (PHOX2B)
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Long intergenic non-coding RNAs (lincRNAs) are emerging as integral components of signaling pathways in various cancer types. In neuroblastoma, only a handful of lincRNAs are known as upstream regulators or downstream effectors of oncogenes. Here, we exploit RNA sequencing data of primary neuroblastoma tumors, neuroblast precursor cells, neuroblastoma cell lines and various cellular perturbation model systems to define the neuroblastoma lincRNome and map lincRNAs up- and downstream of neuroblastoma driver genes MYCN, ALK and PHOX2B. Each of these driver genes controls the expression of a particular subset of lincRNAs, several of which are associated with poor survival and are differentially expressed in neuroblastoma tumors compared to neuroblasts. By integrating RNA sequencing data from both primary tumor tissue and cancer cell lines, we demonstrate that several of these lincRNAs are expressed in stromal cells. Deconvolution of primary tumor gene expression data revealed a strong association between stromal cell composition and driver gene status, resulting in differential expression of these lincRNAs. We also explored lincRNAs that putatively act upstream of neuroblastoma driver genes, either as presumed modulators of driver gene activity, or as modulators of effectors regulating driver gene expression. This analysis revealed strong associations between the neuroblastoma lincRNAs MIAT and MEG3 and MYCN and PHOX2B activity or expression. Together, our results provide a comprehensive catalogue of the neuroblastoma lincRNome, highlighting lincRNAs up- and downstream of key neuroblastoma driver genes. This catalogue forms a solid basis for further functional validation of candidate neuroblastoma lincRNAs. Overall design: CLB-GA was transduced with control or inducible shPHOX2B. The cells were treated with doxycycline for 5 days.

Publication Title

Integrative analysis identifies lincRNAs up- and downstream of neuroblastoma driver genes.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon SRP132968
PolyA+ RNA-seq in a primary T-ALL patient cohort
  • organism-icon Homo sapiens
  • sample-icon 57 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer resulting from malignant transformation of T-cell precursors. Several oncogenes, including the 'T-cell leukemia homeobox 1' TLX1 (HOX11) transcription factor, have been identified as early driver events that cooperate with other genetic aberrations in leukemic transformation of progenitor T-cells. The TLX1 controlled transcriptome in T-ALL has been investigated extensively in the past in terms of protein-coding genes, but remains unexplored thus far at the level of long non-coding RNAs (lncRNAs), the latter renown as well-established versatile and key players implicated in various cancer hallmarks. In this study, we present the first extensive analysis of the TLX1 regulated transcriptome focusing on lncRNA expression patterns. We present an integrative analysis of polyA and total RNA sequencing of ALL-SIL lymphoblasts with perturbed TLX1 expression and a primary T-ALL patient cohort (including 5 TLX1+ and 12 TLX3+ cases). We expanded our initially presented dataset of TLX1 and H3K27ac ChIP data in ALL-SIL cells (Durinck et al., Leukemia, 2015) with H3K4me1, H3K4me3, and ATAC-seq data to accurately define (super-) enhancer marked lncRNAs and assigned potential functional annotations to candidate TLX1-controlled lncRNAs through an in silico guilt-by-association approach. Our study paves the way for further functional analysis of selected lncRNAs as potential novel therapeutic targets for a precision medicine approach in the context of T-ALL. Overall design: polyA+ RNA-seq data was generated for a primary T-ALL patient cohort

Publication Title

A comprehensive inventory of TLX1 controlled long non-coding RNAs in T-cell acute lymphoblastic leukemia through polyA+ and total RNA sequencing.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP132970
Total RNA-seq in ALL-SIL upon TLX1 knockdown
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive type of blood cancer resulting from malignant transformation of T-cell precursors. Several oncogenes, including the 'T-cell leukemia homeobox 1' TLX1 (HOX11) transcription factor, have been identified as early driver events that cooperate with other genetic aberrations in leukemic transformation of progenitor T-cells. The TLX1 controlled transcriptome in T-ALL has been investigated extensively in the past in terms of protein-coding genes, but remains unexplored thus far at the level of long non-coding RNAs (lncRNAs), the latter renown as well-established versatile and key players implicated in various cancer hallmarks. In this study, we present the first extensive analysis of the TLX1 regulated transcriptome focusing on lncRNA expression patterns. We present an integrative analysis of polyA and total RNA sequencing of ALL-SIL lymphoblasts with perturbed TLX1 expression and a primary T-ALL patient cohort (including 5 TLX1+ and 12 TLX3+ cases). We expanded our initially presented dataset of TLX1 and H3K27ac ChIP data in ALL-SIL cells (Durinck et al., Leukemia, 2015) with H3K4me1, H3K4me3, and ATAC-seq data to accurately define (super-) enhancer marked lncRNAs and assigned potential functional annotations to candidate TLX1-controlled lncRNAs through an in silico guilt-by-association approach. Our study paves the way for further functional analysis of selected lncRNAs as potential novel therapeutic targets for a precision medicine approach in the context of T-ALL. Overall design: Total RNA-seq data was generated for the T-ALL cell line ALL-SIL upon TLX1 knockdown

Publication Title

A comprehensive inventory of TLX1 controlled long non-coding RNAs in T-cell acute lymphoblastic leukemia through polyA+ and total RNA sequencing.

Sample Metadata Fields

Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact