The goal of this study was to determine the differential expression of specific genes within the papilloma tissues themselves and to characterize the array of host genes that might be important in the pathophysiology of recurrent respiratory papillomatosis.
Immune dysregulation and tumor-associated gene changes in recurrent respiratory papillomatosis: a paired microarray analysis.
No sample metadata fields
View SamplesThese arrays contain data from hypthalamus tissue of nestin-Pex5 -/- male mice
Peroxisome deficiency but not the defect in ether lipid synthesis causes activation of the innate immune system and axonal loss in the central nervous system.
Specimen part
View SamplesEpithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness and resistance to therapy. The reason why some tumors undergo EMT and other not might reflect intrinsic properties of their cell of origin, although this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show cell type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from intrafollicular epidermis (IFE) are generally well-differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.
Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.
Sex, Specimen part, Treatment
View SamplesEpithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness and resistance to therapy. The reason why some tumors undergo EMT and other not might reflect intrinsic properties of their cell of origin, although this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show cell type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from intrafollicular epidermis (IFE) are generally well-differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.
Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition.
Treatment
View SamplesProduction of reactive oxygen species (ROS) is one of the important antimicrobial mechanisms of phagocytic cells. Enhanced oxidative burst requires these cells to be primed with agents such as IFNg and LPS with a synergistic effect of these agents on the level of the burst. However, excessive ROS generation will lead to tissue damage and has been implicated in a variety of inflammatory and autoimmune disease. Therefore, this process needs to be tightly regulated. In order to understand the genes regulating this process, we will treat bone marrow derived macrophages with above mentioned priming agents and study the gene expression.
NRROS negatively regulates reactive oxygen species during host defence and autoimmunity.
Specimen part, Treatment
View SamplesDifferential gene expression in preimplantation embryos has been documented, but few focused studies have been done to compare differential expression in human embryos after embryonic genome activation and specifically how they relate to blastocyst development. We hypothesized that blastocyst stage embryos would differentially express genes in pathways important in cell division, mobilization, and processes important in embryo implantation including endometrial apposition, adhesion, and invasion. We analyzed gene expression in 6 preimplantation human embryos.
Differentially expressed genes in preimplantation human embryos: potential candidate genes for blastocyst formation and implantation.
Specimen part
View SamplesSelf-renewing tissue-resident macrophages are thought to be exclusively derived from embryonic progenitors. However, whether circulating monocytes can also give rise to such macrophages has not been formally investigated. Here we use a new model of diphtheria toxin-mediated depletion of liver-resident Kupffer cells to generate niche availability and show that circulating monocytes engrafted in the liver, gradually adopt the transcriptional profile of their depleted counterparts and become long-lived self-renewing cells. Underlining the physiological relevance of our findings, circulating monocytes also contribute to the expanding pool of macrophages in the liver shortly after birth, when macrophage niches become available during normal organ growth. Thus, like embryonic precursors, monocytes can and do give rise to self-renewing tissue-resident macrophages if the niche is available to them.
Bone marrow-derived monocytes give rise to self-renewing and fully differentiated Kupffer cells.
Specimen part
View SamplesGenes are up and down regualted in DRG and spinal dorsal cord after peripheral nerve injury Overall design: WT male adult with sciatic and femoral nerve transection 7 days, RNA was purified from ipilateral or contralateral L4-L6 DRGs or lumbar spinal dorsal cords
Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain.
No sample metadata fields
View SamplesRheumatoid arthritis (RA) is a complex and clinically heterogeneous autoimmune disease.
PILRα negatively regulates mouse inflammatory arthritis.
Sex, Specimen part, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
EMT inducers catalyze malignant transformation of mammary epithelial cells and drive tumorigenesis towards claudin-low tumors in transgenic mice.
Specimen part, Cell line
View Samples