Aberrant forms of the SWI/SNF chromatin remodeling complex are associated with human disease. Loss of the Snf5 subunit of SWI/SNF is a driver mutation in pediatric rhabdoid cancers and forms aberrant sub-complexes that are not well characterized. We determined the effects of loss of Snf5 on the composition, nucleosome binding, recruitment and remodeling activities of yeast SWI/SNF. The Snf5 subunit interacts with the ATPase domain of Snf2 and forms a submodule consisting of Snf5, Swp82 and Taf14 as shown by mapping SWI/SNF subunit interactions by crosslinking-mass spectrometry and subunit deletion followed by immunoaffinity chromatography. Snf5 promoted binding of the Snf2 ATPase domain to nucleosomal DNA, enhanced its catalytic activity and facilitated nucleosome remodeling. Snf5 was required for acidic transcription factors to recruit SWI/SNF to chromatin. RNA-seq analysis suggested that both the recruitment and catalytic functions mediated by Snf5 are required for SWI/SNF regulation of gene expression. Overall design: Determining the effects of loss of Snf5 on the composition, nucleosome binding, recruitment, remodeling activities and gene expression profile of yeast SWI/SNF
Loss of Snf5 Induces Formation of an Aberrant SWI/SNF Complex.
Cell line, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View SamplesDuring CNS development, the nuclear protein SATB2 is expressed in superficial cortical layers and determines projection neuron identity. In the adult CNS, SATB2 is expressed in pyramidal neurons of all cortical layers and is a regulator of synaptic plasticity and long-term memory. Common variation in SATB2 locus confers risk of schizophrenia whereas rare, de novo structural and single nucleotide variants cause severe intellectual disability and absent or limited speech. To which extent symptoms in SATB2-related human pathologies depend on developmental or adult functions of the protein remains to be established. To characterize differences in SATB2 molecular function in developing vs adult neocortex, we compared SATB2 protein interactomes and SATB2-driven gene expression programs at the two ontogenetic stages by co-IP mass spectrometry and RNAseq analyses, respectively. Our results demonstrated that 1) SATB2 interacts with different protein networks at the two ontogenetic stages, with a switch from transcriptional repression towards organization of chromatin structure and 2) SATB2 determines differential transcriptional programs in neonatal vs adult cortex. Overall design: Analysis of neocortex transcriptomes of adult (3 month old) SATB2-deficient (Satb2flx/flx::Camk2a-Cre ) vs floxed mice
Genes encoding SATB2-interacting proteins in adult cerebral cortex contribute to human cognitive ability.
Age, Specimen part, Cell line, Subject
View SamplesExpression data from wild-type FY4 and GCR2 deletion strain. Impact of the transcription factor Gcr2p on mRNA expression was investigated in the corresponding deletion strain in exponentially growing glucose minimal medium batch cultures.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View SamplesThe impact on mRNA expression of the transcription factors Bas1, Pho2, Gcn4 and Gcr2p was investigated in the corresponding deletion strains during exponential growth in glucose minimal media batch cultures.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View SamplesThe impact on mRNA expression of the transcription factors Bas1, Pho2, Gcn4 and Gcr2p was investigated in the corresponding deletion strains during exponential growth in glucose minimal media batch cultures.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View SamplesThe impact on mRNA expression of the transcription factors Bas1, Pho2, Gcn4 and Gcr2p was investigated in the corresponding deletion strains during exponential growth in glucose minimal media batch cultures.
Unraveling condition-dependent networks of transcription factors that control metabolic pathway activity in yeast.
No sample metadata fields
View SamplesCumulus cells (CCs) are biologically distinct from other follicular cells and perform specialized roles, transmitting signals within the ovary and supporting oocyte maturation during follicular development. The Affymetrix 3 IVT express protocol was used to prepare cRNA (one-cycle amplification) with a starting concentration of 100 ng of total RNA
Human cumulus cells molecular signature in relation to oocyte nuclear maturity stage.
Specimen part
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.
Specimen part
View SamplesNeural crest-derived neural stem cells (NCSCs) from the embryonic PNS can be reprogrammed in neurosphere culture (NS) to rNCSCs that produce CNS progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord (SCSCs). Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3- and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed towards a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSCs. These findings show that embryonic NCSCs acquire a full CNS identity in neurosphere culture. In contrast, MSCs are generated from adult pNCSCs and BMP NCSCs, which reveals that postmigratory NCSCs are a source for MSCs up to the adult stage.
Alternative generation of CNS neural stem cells and PNS derivatives from neural crest-derived peripheral stem cells.
Specimen part
View Samples