PRDM5 is a recently identified member of the PRDM family of proteins, which functions as a transcriptional repressor by recruiting histone methyltransferase G9A to DNA, and behaves as a putative tumor suppressor in different types of cancer.
The tumor suppressor PRDM5 regulates Wnt signaling at early stages of zebrafish development.
No sample metadata fields
View SamplesGene expression profiling (GEP) of ARL patient samples was done to determine whether gene expression signatures derived from HIV- lymphomas retained their ability to molecularly classify HIV+ lymphomas. The GEP-based predictors robustly classified ARL tumors, distinguishing molecular Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), as well as activated B-cell-like (ABC) and germinal center B-cell-like (GCB) molecular subtypes of DLBCL.
Recurrent chromosomal alterations in molecularly classified AIDS-related lymphomas: an integrated analysis of DNA copy number and gene expression.
Sex, Age
View SamplesGene expression profiling (GEP) of ARL patient samples was done to determine whether gene expression signatures derived from HIV- lymphomas retained their ability to molecularly classify HIV+ lymphomas. The GEP-based predictors robustly classified ARL tumors, distinguishing molecular Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL), as well as activated B-cell-like (ABC) and germinal center B-cell-like (GCB) molecular subtypes of DLBCL.
Recurrent chromosomal alterations in molecularly classified AIDS-related lymphomas: an integrated analysis of DNA copy number and gene expression.
Sex, Age
View SamplesThe development of high-throughput genomic technologies has revealed that a large fraction of the genomes of eukaryotes is associated with the expression of noncoding RNAs. One class of noncoding RNA, the cis-natural antisense transcripts (cis-NATs), are particularly interesting as they are at least partially complementary to the protein-coding mRNAs. Although most studies described cis-NATs involved in the regulation of transcription, a few reports have shown recently that cis-NATs can also regulate translation of the cognate sense coding genes in plants and mammals. In order to identify novel examples of translation regulator cis-NATs in Arabidopsis thaliana, we designed a high-throughput experiment based on polysome profiling and RNA-sequencing. Expression of cis-NATs and translation efficiency of the cognate coding mRNAs were measured in roots and shoots in response to various conditions, including phosphate deficiency and treatment with phytohormones. We identified several promising candidates, and validated a few of them experimentally, in Arabidopsis thaliana transgenic lines over-expressing in trans the translation regulator candidate cis-NATs. Overall design: total RNA and polysomal RNA was sequenced from Arabidopsis thaliana whole seedlings grown in high or low pohsphate content, or from roots or shoots from seedlings treated or not with different phytohormones (Ctrl, IAA, ABA,MeJA and ACC). 3 biological replicates were analyzed for each of the 12 experimental conditions.
Prediction of regulatory long intergenic non-coding RNAs acting in trans through base-pairing interactions.
Specimen part, Treatment, Subject
View SamplesThe transcriptomic changes induced in the human liver cell line HepG2 by 100M menadione, 200M TBH or 50M H2O2 after treatment for 0.5, 1, 2, 4, 6, 8 and 24h.
Time series analysis of oxidative stress response patterns in HepG2: a toxicogenomics approach.
Cell line
View SamplesTCF7L2 regulates multiple metabolic pathways in hepatocytes through a transcriptional network involving HNF4a Overall design: For the identification of Tcf7l2 target genes using a RNA-seq timecourse, and for identifying the binding sites of Tcf7l2 and Hnf4a, Tcf7l2 was silenced in rat H4IIE hepatocytes using siRNA for Tcf7l2 with a scrambled siRNA as control. Treatment times for RNA-seq samples were 3, 6, 9, 12, 15, 18, 48, and 96 hours, and for ChIP-seq samples 15 h. RNA-seq timecourse was performed in duplicate or triplicate, and the ChIP-seq in duplicate for Tcf7l2 and in singlicate for Hnf4a. The H4IIE-specific transcriptome was defined from an independent set of pooled 24 h siRNA treated samples (N=3 for siRNA for Tcf7l2 and N=3 for scrambled siRNA).
The mechanisms of genome-wide target gene regulation by TCF7L2 in liver cells.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Transcriptomic signature of fasting in human adipose tissue.
Age, Specimen part, Subject
View SamplesLittle is known about the impact of fasting on gene regulation in human adipose tissue. Accordingly, the objective of this study was to investigate the effects of fasting on adipose tissue gene expression in humans. To that end, subcutaneous adipose tissue biopsies were collected from volunteers 2h and 26h after consumption of a standardized meal. For comparison, epididymal adipose tissue was collected from C57Bl/6J mice after a 16h fast and in the ab-libitum fed state. Transcriptome analysis was carried out using Affymetrix microarrays. We found that, 1) fasting downregulated numerous metabolic pathways in human adipose tissue, including triglyceride and fatty acid synthesis, glycolysis and glycogen synthesis, TCA cycle, oxidative phosphorylation, mitochondrial translation, and insulin signaling; 2) fasting downregulated genes involved in proteasomal degradation in human adipose tissue; 3) fasting had much less pronounced effects on the adipose tissue transcriptome in humans than mi ce; 4) although major overlap in fasting-induced gene regulation was observed between human and mouse adipose tissue, many genes were differentially regulated in the two species, including genes involved in insulin signaling (PRKAG2, PFKFB3), PPAR signaling (PPARG, ACSL1, HMGCS2, SLC22A5, ACOT1), glycogen metabolism (PCK1, PYGB), and lipid droplets (PLIN1, PNPLA2, CIDEA, CIDEC). In conclusion, although numerous genes and pathways are regulated similarly by fasting in human and mouse adipose tissue, many genes show very distinct responses to fasting in humans and mice. Our data provide a useful resource to study adipose tissue function during fasting.
Transcriptomic signature of fasting in human adipose tissue.
Specimen part
View SamplesThe microbial population that live within the gut of animals influences their physiology. We used axenic and recolonized flies to identify genes whose expression is modulated by the presence of a bacterial flora in the gut.
Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling.
Specimen part, Treatment
View SamplesChronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue, a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPAR) in cold-induced browning. Here we aimed to investigate the importance of PPAR in driving transcriptional changes during cold-induced browning in mice. Male wildtype and PPAR/ mice were housed at thermoneutrality (28 C) or cold (5 C) for 10 days. Whole genome expression analysis was performed on inguinal WAT. In addition, other analyses were carried out. Whole genome expression data of livers of wildtype and PPAR/ mice fasted for 24 h served as positive control for PPAR-dependent gene regulation.Cold exposure increased food intake and decreased weight of BAT and WAT to a similar extent in wildtype and PPAR/ mice. Except for plasma non-esterified fatty acids, none of the cold-induced changes in plasma metabolites were dependent on PPAR genotype. Histological analysis of inguinal WAT showed clear browning upon cold exposure but did not reveal any morphological differences between wildtype and PPAR/ mice. Transcriptomics analysis of inguinal WAT showed a marked effect of cold on overall gene expression, as revealed by principle component analysis and hierarchical clustering. However, wildtype and PPAR/ mice clustered together, even after cold exposure, indicating a similar overall gene expression profile in the two genotypes. Pathway analysis revealed that cold upregulated pathways involved in energy usage, oxidative phosphorylation, and fatty acid -oxidation to a similar extent in wildtype and PPAR/ mice. Furthermore, cold-mediated induction of genes related to thermogenesis such as Ucp1, Elovl3, Cox7a1, Cox8, and Cidea, as well as many PPAR target genes, was similar in wildtype and PPAR/ mice. Finally, pharmacological PPAR activation had a minimal effect on expression of cold-induced genes in murine WAT.Cold-induced changes in gene expression in inguinal WAT are unaltered in mice lacking PPAR, indicating that PPAR is dispensable for cold-induced browning.
The Peroxisome Proliferator-Activated Receptor α is dispensable for cold-induced adipose tissue browning in mice.
Sex
View Samples