Livers from wild-type (WT) or Ppara knock-out (Ppara KO) C57Bl6 mice were used to prepare RNA which was then processed for analysis using MoGene-2_0-st Affymetrix microarrays according to standard procedures.
The logic of transcriptional regulator recruitment architecture at <i>cis</i>-regulatory modules controlling liver functions.
Sex, Specimen part
View SamplesC57Bl6J mice were injected CCL4 for 8 weeks to induce liver injury and livers were used to prepare RNA.
Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin.
Sex, Specimen part, Treatment
View SamplesAutologous chondrocyte transplantation (ACT) is a routine technique to regenerate focal cartilage lesions. However, patients with osteoarthritis (OA) are lacking an appropriate long-lasting treatment alternative, partly since it is not known if chondrocytes from OA patients have the same chondrogenic differentiation potential as chondrocytes from donors not affected by OA. Articular chondrocytes from patients with OA undergoing total knee replacement (Mankin Score >3, Ahlbck Score >2) and from patients undergoing ACT, here referred to as normal donors (ND), were isolated applying protocols used for ACT. Their chondrogenic differentiation potential was evaluated both in high-density pellet and scaffold (Hyaff-11) cultures by histological proteoglycan assessment (Bern Score) and immunohistochemistry for collagen types I and II. Chondrocytes cultured in monolayer and scaffolds were subjected to gene expression profiling using genome-wide oligonucleotide microarrays. Expression data were verified by using quantitative RT-PCR. Chondrocytes from ND and OA donors demonstrated accumulation of comparable amounts of cartilage matrix components, including sulphated proteoglycans and collagen types I and II. The mRNA expression of cartilage markers (COL2A1, COMP, aggrecan, CRTL1, SOX9) and genes involved in matrix synthesis (biglycan, COL9A2, COL11A1, TIMP4, CILP2) was highly induced in 3D cultures of chondrocytes from both donor groups. Genes associated with hypertrophic or OA cartilage (COL10A1, RUNX2, periostin, ALP, PTHR1, MMP13, COL1A1, COL3A1) were not significantly regulated between the two groups of donors. The expression of 661 genes, including COMP, FN1, and SOX9, were differentially regulated between OA and ND chondrocytes cultured in monolayer. During scaffold culture, the differences diminished between the OA and ND chondrocytes, and only 184 genes were differentially regulated. Only few genes were differentially expressed between OA and ND chondrocytes in Hyaff-11 culture. The risk of differentiation into hypertrophic cartilage does not seem to be increased for OA chondrocytes. Our findings suggest that the chondrogenic capacity is not significantly affected by OA and OA chondrocytes fulfill the requirements for matrix-associated ACT.
Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation.
Specimen part
View SamplesGene expression analysis under normal culture conditions (RPMI-10%FBS) and at optimal cell densities.
Low-risk susceptibility alleles in 40 human breast cancer cell lines.
Cell line
View SamplesPrimary human macrophages with a HIF-1alpha or HIF-2alpha knockdown were pretreated with IL-10 for 16h and afterwards for 4h additionaly under hypoxi (1% O2), RNA was isolated usind the Qiagen RNAeasy Kit and cDNA synthesis wos done using Ambion WT Expression Kit. Expression was compared to si control under control conditions.
Genome-wide identification of hypoxia-inducible factor-1 and -2 binding sites in hypoxic human macrophages alternatively activated by IL-10.
Specimen part
View Samples10 days old tumor spheroids were processed for RNA isolation using the Quiagen RNeasy Micro Kit and cDNA synthesis was done using the Ambion WT Expression Kit. Wt, HIF-1 k/d and HIF-2 k/d samples were compared to each other.
HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma.
Specimen part, Cell line
View SamplesHere we present the transcriptomic profile of mutant plants designated as ceh1 (constitutively expressing HPL). CEH1 encodes 1-hydroxy-2-methyl-2-butenyl 4-diphosphate synthase (HDS), the enzyme controlling the bottleneck step of the biosynthesis of isopentenyl diphosphate via the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway in the plastids. Mutation of this enzyme in ceh1 mutant led to accumulation of high levels of the stress specific signaling metabolite 2c-methyl-D-erythritol 2,4-cylclodiphosphate (MEcPP), and consequently constitutive activation of a selected otherwise stress responsive genes. This data identifies the ensemble of stress responsive genes whose expression is regulated by the MEcPP signaling cascade.
Plastid-produced interorgannellar stress signal MEcPP potentiates induction of the unfolded protein response in endoplasmic reticulum.
No sample metadata fields
View SamplesWe have studied the expression profile of 3D cultured human chondrocytes that were stimulated with supernatant of synovial fibroblasts derived from a RA patient (RASF=HSE cell line) and from a normal donor (NDSF=K4IM cell line), respectively. For this purpose, passage 2 human chondrocytes were cultured for 14 days in alginate beads and subsequently stimulated for 48 hours with supernatant of RASF and NDSF. Baseline expression was determined of unstimulated chondrocytes. Differential genome-wide microarray analysis of RASF and NDSF stimulated chondrocytes disclosed a distinct expression profile related to cartilage destruction involving marker genes of inflammation (COX-2), NF-kappa B signaling pathway (TLR2), cytokines/chemokines and receptors (CXCL1-3, CCL20, CXCL8, CXCR4, IL-6, IL-1beta), matrix degradation (MMP-10, MMP-12) and suppressed matrix synthesis (COMP). Thus, transcriptome profiling of RASF and NDSF stimulated chondrocytes revealed a disturbed catabolic-anabolic homeostasis of chondrocyte function. This study provides a comprehensive insight into the molecular regulatory processes induced in human chondrocytes during RA-related cartilage destruction.
Key regulatory molecules of cartilage destruction in rheumatoid arthritis: an in vitro study.
No sample metadata fields
View SamplesDevelopment of a novel CRISPR-derived cell line which is a derivative of CWR22Rv1 cells, called CWR22Rv1-AR-EK, that has lost expression of FL-AR, but retains all endogenous AR-Vs. AR-Vs act unhindered by loss of FL-AR to drive cell growth and expression of androgenic genes. Global transcriptomics demonstrate that AR-Vs drive expression of a cohort of DNA damage response genes and depletion of AR-Vs sensitizes cells to ionizing radiation. Overall design: Transcriptomic profile (mRNA) of AR splice variants in CWR22Rv1 AR-EK cells was generated by deep sequencing, in triplicate, using Illumina HiSeq 2500.
A novel CRISPR-engineered prostate cancer cell line defines the AR-V transcriptome and identifies PARP inhibitor sensitivities.
Specimen part, Cell line, Subject
View SamplesThe invasion of activated fibroblasts represents a key pathomechanism in fibrotic diseases, carcinogenesis and metastasis. Here, invading fibroblasts contribute to fibrotic extracellular matrix (ECM) formation and the initiation, progression, or resistance of cancer, respectively. To construct a transcriptome-wide signature of fibroblast invasion, we used a multiplex phenotypic 3D invasion assay using murine lung fibroblasts. Microarray-based gene expression profiles of invading and non-invading fibroblasts were highly distinct: 1049 genes were differentially regulated (>1.5-fold). An unbiased pathway analysis (Ingenuity) identified a significant enrichment for the functional clusters invasion of cells, idiopathic pulmonary fibrosis (IPF) and metastasis. Particularly, matrix metalloprotease13 (MMP13), transforming growth factor (TGF)1, Caveolin1 (Cav1), Phosphatase and Tensin Homolog (Pten), and secreted frizzled-related protein1 (Sfrp1) were among the highest regulated genes. In silico analysis by Ingenuity predicted TGF1, epidermal growth factor (EGF), fibroblast growth factor2 (FGF2), and platelet-derived growth factor (PDGF)-BB to induce invasion. As such, these growth factors were tested in the 3D invasion assay and displayed a significant induction of invasion, thus validating the transcriptome profile. Accordingly, our transcriptomic invasion signature describes the invading fibroblast phenotype in unprecedented detail and provides a tool for future functional studies of cell invasion and therapeutic modulation thereof.
Validated prediction of pro-invasive growth factors using a transcriptome-wide invasion signature derived from a complex 3D invasion assay.
Sex
View Samples