The goal of the study was to characterize the molecular signatures of CD8 T cell subpopulations sorted from HIV+ lymph nodes and HIV- tonsils. We compared the transcriptome profiles of follicular and non -foliccular CD8 T cells (sorted based on the surface expression fo CCR7 and CXCR5, chemokine receptors that govern the intratissue trafficking of T cells). This is the first study addressing this question. We found several genes differentially expressed in these two CD8 T cell populations. Our pathway analysis revealed that several pathways related to costimulation/activation as well as to beta-catenin pathway were differentially expressed in these two CD8 t cell populations too. Overall design: CD8 T cell populations were sorted and whole transcriptome analysis was performed using an Illumina machine
Follicular CD8 T cells accumulate in HIV infection and can kill infected cells in vitro via bispecific antibodies.
No sample metadata fields
View SamplesWe demonstrate that Prnp dosage is critical for the maintenance of neuronal homeostasis since both its absence and, more relevantly, its overexpression induce higher sensitivity to kainate (KA) damage. These data correlate with electrophysiological results in freely behaving mutant mice showing an imbalance in activity-dependent synaptic processes, as determined from input/output curves, paired-pulse facilitation, and LTP studies. Gene expression profiling showed that 129 genes involved in canonical pathways such as Ubiquitination or Neurotransmission among others were co-regulated in knockout and PrPc overexpressing mice. RT-qPCR analysis of neurotransmission-related genes confirmed GABA-A and AMPA-Kainate receptor subunit transcriptional co-regulation in both Prnp -/- and Tg20 mice. Our results demonstrate that PrPc is necessary for the proper homeostatic functioning of hippocampal circuits, because of its interactions with GABAA and AMPA-Kainate receptors.
Regulation of GABA(A) and glutamate receptor expression, synaptic facilitation and long-term potentiation in the hippocampus of prion mutant mice.
Sex
View SamplesIn this work we present the PrPC-dependent gene expression signature in N2A cells and its implication on the most overrepresented functions; cell cycle, cell growth and proliferation and cell morphology.
PrP(C) regulates epidermal growth factor receptor function and cell shape dynamics in Neuro2a cells.
Specimen part
View SamplesSystemic sclerosis (SSc) or scleroderma is a chronic multiorgan autoimmune disease of unknown etiology characterized by vascular, immunological and fibrotic abnormalities. Several lines of evidence have shown that the endocannabinoid system (ECS) may play a role in the pathophysiology of SSc. VCE-004.8, a CBD aminoquinone derivative, is a dual PPAR?/CB2 that alleviates bleomycin (BLM)-induced skin fibrosis. Herein we report that EHP-101, an oral lipidic formulation of VCE-004.8, prevents skin and lung fibrosis and collagen accumulation in BLM challenged mice. Immunohistochemistry analysis of the skin demonstrate that EHP-101 prevents macrophage infiltration, and the expression of Tenascin C (TNC), VCAM, and the a-smooth muscle actin (SMA). In addition, a reduced expression of vascular CD31, paralleling skin fibrosis, was also prevented by EHP-101. RNAseq analysis in skin biopsies showed a clear effect of EHP-101 in the inflammatory and epithelial-mesenchymal transition transcriptomic signatures. TGF-beta regulated genes such as matrix metalloproteinase-3 (Mmp3), cytochrome b-245 heavy chain (Cybb), lymphocyte antigen 6E (Ly6e), vascular cell adhesion molecule-1 (Vcam1) and the Integrin alpha-5 (Itga5) were induced in BLM mice and repressed by EHP-101 treatment. We also intersected differentially expressed genes in EHP-101-treated mice with dataset of human scleroderma intrinsic genes and found 53 overlapped genes, including the C-C motif chemokine 2 (Ccl2) and the interleukin 13 receptor subunit alpha 1 (IL-13Ra1) genes, which have been studied as biomarkers of SSc. Altogether the results indicate that this synthetic cannabinoid qualifies as a novel compound for the management and possible treatment of scleroderma and, potentially, other fibrotic diseases. Overall design: RNA-Seq profiles were generated for six- to eight-week-old female BALB/c mice in three conditions: Control, Bleomycin and Bleomycin + EHP-101 treatment (N=2).
EHP-101, an oral formulation of the cannabidiol aminoquinone VCE-004.8, alleviates bleomycin-induced skin and lung fibrosis.
Specimen part, Cell line, Subject
View SamplesBackground. Although the emergence of RNA sequencing (RNA-seq), microarrays remain in widespread use for gene expression analysis in the clinic. There are over 767,000 RNA microarrays from human samples in public repositories, which are an invaluable resource for biomedical research and personalized medicine. The absolute gene expression analysis allows the transcriptome profiling of all expressed genes under the specific biological condition without the need of a reference sample. However, the background fluorescence represents a challenge to determine the absolute gene expression in microarrays. Given that the Y chromosome is absent in female subjects, we used it as a new approach for absolute gene expression analysis in which the fluorescence of the Y chromosome genes of female subjects was used as the background fluorescence for all the probes in the microarray. This fluorescence was used to establish an absolute gene expression threshold, allowing the differentiation between expressed and non-expressed genes in microarrays.
A novel approach for human whole transcriptome analysis based on absolute gene expression of microarray data.
Sex, Specimen part
View SamplesEpidermal growth factor (EGF) is a key regulatory growth factor activating a myriad of processes affecting cell proliferation and survival that are relevant to normal development and disease. Here we have used a combined approach to study the EGF dependent transcriptome of HeLa cells. We obtained mRNA expression profiles using multiple long oligonucleotide based microarray platforms (from Agilent, Operon, Febit, and Illumina) in combination with digital gene expression profiling (DGE) with the Illumina Genome Analyzer I (GA-I). By applying a procedure for cross-platform data meta-analysis based on rank product and global ancova tests, we establish a well validated gene set with transcript levels altered after EGF treatment. We used this robust gene list to build higher order networks of gene interaction by interconnecting associated networks, supporting and extending the important role of the EGF signaling pathway in cancer. In addition, we found a whole new set of genes previously unrelated to the currently accepted EGF associated cellular functions, among which are metallothionein genes. We propose the use of global genomic cross-validation to generate more reliable datasets derived from high content technologies (microarrays or deep sequencing). This approach should help to improve the confidence of downstream in silico functional inference analyses based on high content data. Keywords: treated vs. untreated comparison, time course Overall design: Time course experiment comparing HeLa gene expression in response to EGF analyzed on different microarray platforms (Agilent, IMPPC, Illumina, and Operon) and by digital gene expression using short read high throughput tag sequencing. Three independent experiments were performed where HeLa cells were serum deprived for 24 hours and were either left untreated or treated with EGF for 6, and 24 h and harvested for RNA extraction. Technical dye swap duplicates were performed for each of the three biological replicates in both time points. Comparative genomic hybridization of HeLa cell genomic DNA versus poooled genomic DNA from blood obtained from human females conducted on commercial oligonucleotide microarrays (Human Genome CGH Microarray Kit 244A, Agilent Technologies) in order to assess DNA dosage dependence of gene expression levels and response to EGF. Digital gene expression using short read high throughput tag sequencing data submitted to NCBI''s SRA
Multiple platform assessment of the EGF dependent transcriptome by microarray and deep tag sequencing analysis.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Genomic characterization of liver metastases from colorectal cancer patients.
Sex, Age, Disease, Disease stage
View SamplesWhsc1 gene codes for a SET domain-containing H3K36 dimethylase, whose activity has been suggested, in ex vivo cell culture experiments, to control many aspects of DNA and RNA processing (replication, repair, transcription, etc). Its precise function in vivo is still unclear. Here, we use RNA-seq transcriptome analysis to study the changes in gene expression in the absence of Whsc1. Our results show that, in the experimental system used, loss of Whsc1 caused massive changes in genes affecting many fundamental cellular processes, from cell cycle to ribosome synthesis, DNA repair, replication, etc. Overall design: Whsc1-KO mice are embryonic lethal. We therefore took hematopoietic cells from fetal liver of WT and Whsc1-KO embryo littermates and injected them in to lethally irradiated RAG1-KO recipients and allowed the generation of a full Whsc1-KO hematopoietic system. Then, WT and Whsc1-KO B cells were obtained from the spleen and stimulated with LPS to induce proliferation and class switch recombination. Flow cytometry and cell cycle analyses (among others) showed the existence of serious proliferative alterations in Whsc1-KO cells. Then, we performed paired-end RNAseq analyses of 7 independent WT and 6 independent Whsc1-KO biological replicates and we used these data to identify differentially expressed genes and pathways regulated by Whsc1 in B cells.
Wolf-Hirschhorn Syndrome Candidate 1 Is Necessary for Correct Hematopoietic and B Cell Development.
Cell line, Subject
View SamplesEffect on the transcriptome of an insertion in the gene At3g08610 encoding a subunit of mitochondrial complex I
Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night.
Age, Specimen part, Time
View SamplesCancer originates as the progressive accumulation of genetic mutations in proto-oncogenes and tumor suppressors. However, the early events underlying tumor initiation remain largely elusive, mostly due to the general lack of information regarding the cells-of-origin responsible for tumor formation as well as the precise impacts of genetic insults on tumor initiation in vivo. Here, we demonstrate that Sox2-positive (Sox2+) adult stem cells are responsible for epithelial squamous tumor formation. Conditional expression of oncogenic Kras (KrasG12D) and knockout of p53 (also known as Trp53) in Sox2+ cells quickly and specifically resulted in the formation of squamous tumors in the forestomach and esophagus. GFP-based lineage tracing experiments demonstrated that Sox2+ cells are the cells-of-origin of squamous tumors in the esophagus and forestomach. Of note, our data showed that p53 deletion alone did not suffice for tumor initiation. On the contrary, tumor initiation was observed upon KrasG12D activation whereas p53 deletion further contributed to the malignancy of the generated tumors, pointing out distinct roles for Kras activation and p53 deletion in squamous tumor formation and progression, to which a multihit carcinogenesis model can be applied. Global gene expression analysis revealed secreting factors upregulated in the generated tumors induced by oncogenic Kras, which contribute to tumor progression. Taken together, these results demonstrate that epithelial squamous tumors can specifically originate as a consequence of defined genetic mutations in a Sox2+ cell population and highlight the connections between proliferative stem cells and tumor development in vivo. Overall design: Expression profiling of mouse tissues with genetically induced tumors by RNA-Seq
Mutations in foregut SOX2<sup>+</sup> cells induce efficient proliferation via CXCR2 pathway.
No sample metadata fields
View Samples