refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 836 results
Sort by

Filters

Technology

Platform

accession-icon GSE14468
Gene expression profiling of CEBPA double and single mutant and CEBPA wild type AML.
  • organism-icon Homo sapiens
  • sample-icon 525 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mutations in CCAAT/enhancer binding protein alpha (CEBPA) are seen in 5-14% of acute myeloid leukemia (AML) and have been associated with a favorable clinical outcome. Most AMLs with CEBPA mutations simultaneously carry two mutations (CEBPAdouble-mut), usually biallelic, while single heterozygous mutations (CEBPAsingle-mut) are less frequently seen. Using denaturing high performance liquid chromatography and nucleotide sequencing we identified among a cohort of 598 newly diagnosed AMLs a subset of 41 CEBPA mutant cases, i.e. 28 CEBPAdouble-mut and 13 CEBPAsingle-mut cases. CEBPAdouble-mut associated with a unique gene expression profile as well as favorable overall and event-free survival, retained in multivariable analysis that included cytogenetic risk, FLT3-ITD and NPM1 mutation, white blood cell count and age. In contrast, CEBPAsingle-mut AMLs did not express a discriminating signature and could not be distinguished from wild type cases as regards clinical outcome. These results demonstrate significant underlying heterogeneity within CEBPA mutation positive AML with prognostic relevance.

Publication Title

Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE44543
Expression data from mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Analysis of the transcriptome of -catenin flox/- mES cells in comparison with -catenin null mES cells or -catenin null mES cells stably transfected with an E-cadherin--catenin fusion protein.

Publication Title

E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44265
HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.

Publication Title

HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE6891
Acute myeloid leukemia samples of samples =< 60yrs on HG-U133 plus 2
  • organism-icon Homo sapiens
  • sample-icon 537 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The pretreatment karyotype of leukemic blasts is currently the key determinant in therapy decision-making in acute myeloid leukemia (AML). However, approximately fifty percent of AML patients, often carrying a normal karyotype, are currently unclassifiable based these established methods. Gene expression profiling has proven to be valuable for risk stratification of AML.

Publication Title

Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE26343
Gene expression from bone-marrow derived macrophages.
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Gene expression from WT and NFAT5 KO primary macrophage cultures.

Publication Title

Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP055810
Single-Cell RNA-seq Defines the Three Cell Lineages of the Human Blastocyst
  • organism-icon Homo sapiens
  • sample-icon 86 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Here we provide fundamental insights into early human development by single-cell RNA-sequencing of human and mouse preimplantation embryos. We elucidate conserved transcriptional programs along with those that are human-specific. Importantly, we validate our RNA-sequencing findings at the protein level, which further reveals differences in human and mouse embryo gene expression. For example, we identify several genes exclusively expressed in the human pluripotent epiblast including the transcription factor KLF17. Key components of the TGF-ß signaling pathway including NODAL, GDF3, TGFBR1/ALK5, LEFTY1, SMAD2, SMAD4 and TDGF1 are also enriched in the human epiblast. Intriguingly, inhibition of TGF-ß signaling abrogates NANOG expression in human epiblast cells, consistent with a requirement for this pathway in pluripotency. Although key trophectoderm factors Id2, Elf5, and Eomes are exclusively localized to this lineage in the mouse, the human orthologues are either absent or expressed in alternative lineages. Importantly, we also identify genes with conserved expression dynamics including Foxa2/FOXA2, which we show is restricted to the primitive endoderm in both human and mouse embryos. Comparisons of the human epiblast to existing embryonic stem cells (hESCs) reveals conservation of pluripotency but also additional pathways more enriched in hESCs. Our analysis highlights significant differences in human preimplantation development compared to mouse and provides a molecular blueprint to understand human embryogenesis and its relationship to stem cells. Overall design: Single-Cell RNA-seq

Publication Title

Defining the three cell lineages of the human blastocyst by single-cell RNA-seq.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76563
The study of inflammatory responses in mammalian macrophages with LPS stimulation
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76561
LPS stimulation of human PBMC-derived macrophages
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions and its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalyzing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. Using a combination of literature information, transcription factor prediction models and genome-wide expression arrays, we inferred the regulatory network of IRG1 in mouse and human macrophages.

Publication Title

Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76562
LPS stimulation of Mouse (RAW 264.7) macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Immunoresponsive gene 1 (IRG1) is one of the highest induced genes in macrophages under pro-inflammatory conditions and its function has been recently described: it codes for immune-responsive gene 1 protein/cis-aconitic acid decarboxylase (IRG1/CAD), an enzyme catalyzing the production of itaconic acid from cis-aconitic acid, a tricarboxylic acid (TCA) cycle intermediate. Itaconic acid possesses specific antimicrobial properties inhibiting isocitrate lyase, the first enzyme of the glyoxylate shunt, an anaplerotic pathway that bypasses the TCA cycle and enables bacteria to survive on limited carbon conditions. To elucidate the mechanisms underlying itaconic acid production through IRG1 induction in macrophages, we examined the transcriptional regulation of IRG1. Using a combination of literature information, transcription factor prediction models and genome-wide expression arrays, we inferred the regulatory network of IRG1 in mouse and human macrophages.

Publication Title

Gene Regulatory Network Inference of Immunoresponsive Gene 1 (IRG1) Identifies Interferon Regulatory Factor 1 (IRF1) as Its Transcriptional Regulator in Mammalian Macrophages.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17061
Gene expression profiling of 35 AML FAB-M0 samples
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Ficolled AML-M0 sample gene expression profiles on Affymetrix HGU133Plus2.0 GeneChips. Acute myeloid leukemia (AML) classified as FAB-M0 is defined as a subtype with minimally differentiated morphology. Here we investigated by gene expression (GEP) profiling whether AML-M0 cases should be considered as one or more unique molecular subgroups that discriminates them from other AML patients. By applying GEP and subsequent unsupervised analysis of 35 AML-M0 samples and 253 previously reported AML cases, we demonstrate that AML-M0 cases express a unique signature. Hematological transcription regulators such as CEBPA, CEBPD, PU.1 and ETV6 and the differentiation associated gene MPO appeared strongly down-regulated, in line with the very primitive state of this type of leukemia. Moreover, AML M0 cases appeared to have a strong positive correlation with a previously defined immature AML subgroup with adverse prognosis. AML-M0 leukemias frequently carry loss-of-function RUNX-1 mutation and unsupervised analyses revealed a striking distinction between cases with and without mutations. RUNX1 mutant AML-M0 samples showed a distinct up-regulation of B-cell-related genes, e.g. members of the B-cell receptor complex, transcriptions regulators RUNX3, ETS2, IRF8 or PRDM1 and major histocompatibility complex class II genes. Importantly, expression of one single gene, i.e. BLNK, enabled prediction of RUNX1 mutations in AML-M0 with high accuracy. We propose that RUNX1 mutations in this subgroup of AML cause lineage infidelity, leading to aberrant co-expression of myeloid and B-lymphoid genes in the same cells.

Publication Title

Gene expression profiling of minimally differentiated acute myeloid leukemia: M0 is a distinct entity subdivided by RUNX1 mutation status.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact