refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 225 results
Sort by

Filters

Technology

Platform

accession-icon GSE19675
Negative regulation of the IFN/STAT signaling pathway by the Trim24 tumor suppressor protein through Rara inhibition
  • organism-icon Mus musculus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Recent genetic studies in mice have established a key role for the nuclear receptor coregulator Trim24 in liver tumor suppression and provided evidence that Trim24 suppresses hepatocarcinogenesis by inhibiting retinoic acid receptor alpha (Rara)-dependent transcription and cell proliferation. However, it is unknown which downstream targets of Rara regulated by Trim24 are critical for tumorigenesis. We report here that loss of Trim24 results in the overexpression of interferon (IFN)/STAT pathway genes in the liver, a process that occurs early in tumorigenesis and is more pronounced in tumors, despite the enhanced expression, late in the disease, of negative regulators such as Usp18, Socs1 and Socs2.

Publication Title

Tripartite motif 24 (Trim24/Tif1α) tumor suppressor protein is a novel negative regulator of interferon (IFN)/signal transducers and activators of transcription (STAT) signaling pathway acting through retinoic acid receptor α (Rarα) inhibition.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE67761
Genome-wide analysis of RAR transcriptional targets in mouse striatum links retinoic acid signaling with Huntingtons disease and other neurodegenerative disorders
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptome analysis of nucleus accumbens shell samples from RAR-null mutant mice and their wild type littermates

Publication Title

Genome-wide Analysis of RARβ Transcriptional Targets in Mouse Striatum Links Retinoic Acid Signaling with Huntington's Disease and Other Neurodegenerative Disorders.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE48203
Expression data from tumoral thymocytes and DP thymocytes expressing an activated form of b-catenin in mouse T cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To assess the importance of the Wnt pathway during T cell develoment, we generated a mouse line (R26-cat) in which high levels of active -catenin are maintained throughout T cell development. Young R26-cat mice (6-week-old) show a differentiation block at the CD4+CD8+ DP stage. All R26-cat mice develop T cell leukemias with a DP phenotype at 5-6 months of age.

Publication Title

β-Catenin activation synergizes with Pten loss and Myc overexpression in Notch-independent T-ALL.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE43578
Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Retinoic acid (RA), an active derivative of the liposoluble vitamin A (retinol), acts as an important signaling molecule during embryonic development, regulating phenomenons as diverse as anterior-posterior axial patterning, forebrain and optic vesicle development, specification of hindbrain rhombomeres, pharyngeal arches and second heart field, somitogenesis, and differentiation of spinal cord neurons. This small molecule directly triggers gene activation by binding to nuclear receptors (RARs), switching them from potential repressors to transcriptional activators. The repertoire of RA-regulated genes in embryonic tissues is poorly characterized. We performed a comparative analysis of the transcriptomes of murine wild-type and Retinaldehyde Dehydrogenase 2 null-mutant (Raldh2-/-) embryos - unable to synthesize RA from maternally-derived retinol - using Affymetrix DNA microarrays. Transcriptomic changes were analyzed in two embryonic regions: anterior tissues including forebrain and optic vesicle, and posterior (trunk) tissues, at early stages preceding the appearance of overt phenotypic abnormalities. Several genes expected to be downregulated under RA deficiency appeared in the transcriptome data (e.g. Emx2, Foxg1 anteriorly, Cdx1, Hoxa1, Rarb posteriorly), whereas reverse-transcriptase-PCR and in situ hybridization performed for additional selected genes validated the changes identified through microarray analysis. Altogether, the affected genes belonged to numerous molecular pathways and cellular/organismal functions, demonstrating the pleiotropic nature of RA-dependent events. In both tissue samples, genes upregulated were more numerous than those downregulated, probably due to feedback regulatory loops. Bioinformatic clustering analysis allowed us to extract groups of genes displaying similar behaviors in mutant tissue samples. These data give an overview of the gene expression changes occurring under a state of embryonic RA deficiency, and provide new candidate genes and pathways for a better understanding of retinoid-dependent molecular events.

Publication Title

Transcriptomic analysis of murine embryos lacking endogenous retinoic acid signaling.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2379
Hypopharyngeal_cancer_transcriptome
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U95A Array (hgu95a)

Description

Gene expression analysis of a unique HNSCC (Head and Neck Squamous Cell Carcinoma) localization, the hypopharynx. Four normal and 34 tumor samples were analysed using Affymetrix HG-U95A microarrays containing probe sets representing ~12650 distinct transcription features.

Publication Title

Identification of genes associated with tumorigenesis and metastatic potential of hypopharyngeal cancer by microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9810
Comparison of human and mouse dendritic cell subsets by genome-wide expression profiling
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dendritic cells (DCs) are a complex group of cells which play a critical role in vertebrate immunity. Spleen or lymph node resident DCs are subdivided into conventional DC (cDC) subsets (CD11b and CD8alpha in mouse; BDCA1 and BDCA3 in man) and plasmacytoid DCs (pDCs). It is currently unclear if these various DC populations belong to a unique hematopoietic lineage and if the subsets identified in the mouse and human systems are evolutionary homologs. To bring novel insights into these questions, we sought conserved genetic signatures for these DCs through the analysis of a compendium of genome-wide expression profiles of mouse or human leukocytes.

Publication Title

Novel insights into the relationships between dendritic cell subsets in human and mouse revealed by genome-wide expression profiling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46090
Gene expression in WT and Ikaros-deficient DN3, DN4 and DP thymocyte populations
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

DN3, DN4 and DP cells were sorted from 3-4 week old WT and mice and subjected to transcriptome analysis

Publication Title

The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46088
Ikaros responsive genes in the T29 cell line
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mouse Ikaros-deficient thymic lymphoma cell line T29 was transduced with an empty retrovirus (MigR1) or a retrovirus expressing an fusion proein between Ikaros1 and the ligand binding domain of the estrogen receptor. Cells trreated with ethanol or 4-hydroxy-tamoxyfen (4OHT) for 24h were profiled.

Publication Title

The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE46091
Genes regulated by the gamma secretase inhibitor in WT and Ikaros deficient DN3 cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lineage-negative thymocytes were cultured on OP9-DL1 stromal cells for 16h in the presence of DMSO or the gamma secretase inhibitor MRK-003. DN3 cells cells were then sorted and their transcriptome analyzed.

Publication Title

The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE46089
Notch responsive genes in the T29 cell line
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The mouse Ikaros-deficient thymic lymphoma cell line T29 was transduced with a retrovirus expressing an fusion protein between a dominant-negative form of Mastermind and the ligand binding domain of the estrogen receptor. Cells trreated with Ethanol or 4-hydroxy-tamoxyfen for 24h were profiled.

Publication Title

The tumor suppressor Ikaros shapes the repertoire of notch target genes in T cells.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact