Mutations in methyl-CpG-binding protein 2 (MeCP2), a major epigenetic regulator, are the predominant cause of Rett syndrome, an X-linked neurodevelopmental disorder. We previously found that Mecp2-null microglia are functionally impaired, and that engraftment of wild-type monocytes into the brain of Mecp2-deficient mice attenuates pathology. In this study we show that Mecp2 is expressed in macrophage and monocyte populations throughout the body, and is indispensable for their transcriptional regulation in multiple contexts. We demonstrate that Mecp2-null mice progressively lose or are chronically deficient in several macrophage populations and resident monocytes. Postnatal re-expression of Mecp2 driven by a tamoxifen-inducible CX3CR1 promoter significantly increased the lifespan of otherwise Mecp2-null mice, suggesting that epigenetic regulation of macrophage function by Mecp2 significantly contributes to pathology. RNA-Seq of acutely isolated microglia and peritoneal macrophages (to our knowledge, the first cell-specific RNA-Seq analysis comparing Mecp2-null and wild type cells of any kind) revealed significantly increased transcription of glucocorticoid- and hypoxia-signaling genes in Mecp2-null cells compared to that in their wild-type counterparts, suggesting that Mecp2 functions as a repressor of these pathways. Furthermore, in-vitro and in vivo validation studies demonstrated that the absence of Mecp2 is associated with cell-intrinsic dysfunction of signaling underlying inflammatory activation, suggesting that Mecp2 is important for regulation of specific macrophage gene-expression programs in response to stimuli and stressors. Our findings demonstrate a fundamental role for Mecp2 in the regulation of macrophage functions, which may provide a link to pathologies in Rett syndrome across multiple organs. Overall design: Mecp2-null microglia and resident peritoneal macrophages from 10-12 week old mice were acutely isolated via AutoMACS, total RNA collected, and analyzed via RNA-Seq to compare for transcriptional differences in microglia and macrophages in the absence of Mecp2.
Methyl-CpG Binding Protein 2 Regulates Microglia and Macrophage Gene Expression in Response to Inflammatory Stimuli.
No sample metadata fields
View Samplesaffy_cotton_2011_12 - affy_cotton_2011_12 - In this study we characterized the fiber transcriptomes of the two species, Gossypium hirsutum and Gossypium barbadense that were parental genotypes of a RIL mapping population used previously for phenotypic QTL and expression QTL mapping., We used 454 deep pyrosequencing to characterize cDNAs from developing fibers at two key developmental time-points; 10 and 22 days post anthesis. A unigene set was assembled and annotated, and differential digital gene expression was assessed from the different time-point and genotype representations of the reads within assembled contigs. As a complementary approach, we conducted microarray-based hybridization profiling using the cotton Affymetrix gene chip and labeled cDNAs from fibers at 11 dpa and for the same two genotypes and compared differentially expressed genes identified by the two platforms. The 454 unigenes were also mined for the presence of microsatellite repeats and SNPs that will be useful markers for mapping and marker-assisted selection in cotton improvement.-Total RNA was extracted from 11 dpa-old fibers from the two genotypes, Guazuncho 2 (Gossypium hirsutum) and VH8-4602 (G. barbadense), and included two replicates of each. RNA was checked for quality and quantity using an Agilent Bioanalyser 2100 (Agilent Technologies, Santa Clara, CA, USA, http://www.home.agilent.com) following the manufacturers recommendations. The RNA was sent to the Australian Genome Research Facility Ltd. (http://www.agrf.org.au, Melbourne, Victoria, Australia) for labeling and hybridization to the Affymetrix Genechip Cotton Genome Array (21,854 genes) (Affymetrix, http://www.affymetrix.com/). -
Deep sequencing reveals differences in the transcriptional landscapes of fibers from two cultivated species of cotton.
Age, Specimen part
View SamplesPersons with Down syndrome (DS) exhibit low muscle strength that significantly impairs their physical functioning. The Ts65Dn mouse model of DS also exhibits muscle weakness in vivo and may serve as a useful model to examine potential factors responsible for DS-associated muscle dysfunction. Therefore, the purpose of this experiment was to directly assess skeletal muscle function in the Ts65Dn mouse and to reveal potential mechanisms of DS-associated muscle weakness. Soleus muscles were harvested from anesthetized male Ts65Dn and wild-type (WT) colony controls. In vitro muscle contractile experiments revealed normal force generation of unfatigued Ts65Dn soleus, but a 12% reduction in force was observed in Ts65Dn muscle during recovery following fatiguing contractions compared to WT muscle (p<0.05). Oxidative stress may contribute to DS-related pathologies, including muscle weakness, which may be the result of overexpression of chromosome 21 genes (e.g., copper-zinc superoxide dismutase (SOD1)). SOD1 expression was 25% higher (p<0.05) in Ts65Dn soleus compared to WT muscle but levels of other antioxidant proteins were unchanged. Lipid peroxidation (4-hydroxynoneal) was unaltered in Ts65Dn muscle although protein carbonyls were 20% greater compared to muscle of WT animals (p<0.05). Cytochrome c oxidase expression was reduced 22% in Ts65Dn muscle, suggesting a limitation in mitochondrial function may contribute to post-fatigue muscle weakness. Microarray analysis of Ts65Dn soleus revealed alteration of numerous cellular pathways including: proteolysis, glucose and fat metabolism, neuromuscular transmission, and ATP biosynthesis. In summary, the Ts65Dn mouse displays evidence of muscle dysfunction, and the potential role of mitochondria and oxidative stress warrants further investigation.
Functional and biochemical characterization of soleus muscle in Down syndrome mice: insight into the muscle dysfunction seen in the human condition.
Sex, Age, Specimen part
View SamplesHoxb8 mutant mice show compulsive behavior similar to trichotillomania, a human obsessive-compulsive-spectrum disorder. The only Hoxb8 lineage-labeled cells in the brains of mice are microglia, suggesting that defective Hoxb8 microglia caused the disorder. What is the source of the Hoxb8 microglia? It has been posited that all microglia progenitors arise at embryonic day (E) 7.5 during yolk sac hematopoiesis, and colonize the brain at E9.5. In contrast, we show the presence of two microglia subpopulations: canonical, non-Hoxb8 microglia and Hoxb8 microglia. Unlike non- Hoxb8 microglia, Hoxb8 microglia progenitors appear to be generated during the second wave of yolk sac hematopoiesis, then detected in the aorto-gonad-mesonephros (AGM) and fetal liver, where they are greatly expanded, prior to infiltrating the E12.5 brain. Further, we demonstrate that Hoxb8 hematopoietic progenitor cells taken from fetal liver are competent to give rise to microglia in vivo. Although the two microglial subpopulations are very similar molecularly, and in their response to brain injury and participation in synaptic pruning, they show distinct brain distributions which might contribute to pathological specificity. Non-Hoxb8 microglia significantly outnumber Hoxb8 microglia, but they cannot compensate for the loss of Hoxb8 function in Hoxb8 microglia, suggesting further crucial differences between the two subpopulations. Overall design: Green (non-Hoxb8, control) and yellow (Hoxb8, experimental) microglia data sets
Correction: Two distinct ontogenies confer heterogeneity to mouse brain microglia (doi: 10.1242/dev.152306).
Age, Specimen part, Cell line, Subject
View SamplesMelasma is a commonly acquired hyperpigmentary disorder of the face, but its pathogenesis is poorly understood and its treatment remains challenging. We conducted a comparative histological study on lesional and perilesional normal skin to clarify the histological nature of melasma. Significantly, higher amounts of melanin and of melanogenesis-associated proteins were observed in the epidermis of lesional skin, and the mRNA level of tyrosinase-related protein 1 was higher in lesional skin, indicating regulation at the mRNA level. However, melanocyte numbers were comparable between lesional and perilesional skin. A transcriptomic study was undertaken to identify genes involved in the pathology of melasma. A total of 279 genes were found to be differentially expressed in lesional and perilesional skin. As was expected, the mRNA levels of a number of known melanogenesis-associated genes, such as tyrosinase, were found to be elevated in lesional skin. Bioinformatics analysis revealed that the most lipid metabolism-associated genes were downregulated in lesional skin, and this finding was supported by an impaired barrier function in melasma. Interestingly, a subset of Wnt signaling modulators, including Wnt inhibitory factor 1, secreted frizzled-related protein 2, and Wnt5a, were also found to be upregulated in lesional skin. Immunohistochemistry confirmed the higher expression of these factors in melasma lesions.
Transcriptional profiling shows altered expression of wnt pathway- and lipid metabolism-related genes as well as melanogenesis-related genes in melasma.
Specimen part
View SamplesmRNA present in EPC derived microvescicles were detected using a RNA quantity curve, in order to evaluate if these vescicles were shuttling a specific subset of mRNAs
Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA.
No sample metadata fields
View SamplesHuman infection with Cryptococcus neoformans (Cn), a prevalent fungal pathogen, occurs by inhalation and deposition in the lung alveoli of infectious particles. The subsequent host pathogen interaction is multifactorial and can result either in eradication, latency or extra-pulmonary dissemination. Successful control of Cn infection is dependent on host macrophages as shown by numerous studies. However in vitro macrophages display little ability to kill Cn. Recently, we reported that ingestion of Cn by macrophages induces early cell cycle progression that is subsequently followed by mitotic arrest, an event that almost certainly reflects damage to the host cell. The goal of the present work was to understand macrophage pathways affected by Cn toxicity. Infection of J774.16 macrophage-like cell line macrophages by Cn in vitro was associated with changes in gene pattern expression. Concomitantly we observed depolarization of macrophage mitochondria and alterations in protein translation rate. Our results indicate that Cn infection impairs multiple host cellular functions. Therefore we conclude Cn intracellular residence in macrophages undermines the health of these critical phagocytic cells interfering with their ability to clear the fungal pathogen.
Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans.
Specimen part, Cell line, Time
View SamplesSeveral studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MV) derived from human liver stem cells (HLSC) were able to stimulate in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MV in the hepatocytes by an alpha4 integrin-dependent mechanism. However, when treated with RNase, MV despites their internalization were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA dependent effect. Microarray analysis and quantitative RT-PCR demonstrated that MV were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MV were found to accelerate the morphological and functional recovery of liver in a model of 70% hepatectomy in rats by inducing an hepatocytes proliferation that was abolished by RNase treatment. Using human AGO2 gene, which is shuttled by MV, as a reporter gene, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MV. This suggest a translation of the MV shuttled mRNA within hepatocytes of treated rats. Conclusion: these results suggest that MV derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets.
Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats.
Specimen part
View SamplesThe experiment aims to identify transcriptional effects of Infliximab (an anti-TNF antibody) and CDP870 on human cell lines
mTNF reverse signalling induced by TNFα antagonists involves a GDF-1 dependent pathway: implications for Crohn's disease.
Cell line, Treatment, Time
View SamplesTo understand differences in the pathogenesis of synovial hyperplasia during TNF-induced arthritis, we compared the global gene expression of hTNFtg and hTNFtg;Rsk2-/y primary synovial fibroblasts.
Rsk2 controls synovial fibroblast hyperplasia and the course of arthritis.
Sex, Specimen part
View Samples