The etiology of trauma-hemorrhage shock-induced acute lung injury has been difficult to elucidate due, at least in part, to the inability of in vivo studies to separate the non-injurious pulmonary effects of trauma-hemorrhage from the tissue injurious ones. To circumvent this in vivo limitation, we utilized a model of trauma-hemorrhagic shock (T/HS) in which T/HS-lung injury was abrogated by dividing the mesenteric lymph duct. In this way, it was possible to separate the pulmonary injurious response from the non-injurious systemic response to T/HS by comparing the pulmonary molecular response of rats subjected to T/HS which did and did not develop lung injury as well as to non-shocked rats. Utilizing high-density oligonucleotide arrays and treatment group comparisons of whole lung tissue collected at 3 hours after the end of the shock or sham-shock period, 139 of the 8,799 assessed genes were differentially expressed.
Molecular signatures of trauma-hemorrhagic shock-induced lung injury: hemorrhage- and injury-associated genes.
No sample metadata fields
View SamplesmRNA profiles of 8 weeks old C57BL/6 mice 2 days after infections with 5e7 pfu of various strains of murine norovirus (MNV) or 1e8 pfu of T1L reovirus were evauated Overall design: mRNA profiles of 8 weeks old C57BL/6 mice 2 days after infections with 5e7 pfu of various strains of murine norovirus (MNV) or 1e8 pfu of T1L reovirus were evauated
Murine Norovirus Infection Induces T<sub>H</sub>1 Inflammatory Responses to Dietary Antigens.
Age, Specimen part, Cell line, Subject
View SamplesActivators of innate immunity may have potential to combat a broad range of infectious agents. We report that treatment with bacterial flagellin prevented rotavirus (RV) infection in mice and cured chronically RV-infected mice. Protection was independent of adaptive immunity and interferon (IFN, type I and II) and required flagellin receptors Toll-like receptor 5 (TLR5) and NOD-like receptor C4 (NLRC4). Flagellin-induced activation of TLR5 on dendritic cells elicited production of the cytokine interleukin (IL)-22, which induced a protective gene expression program in intestinal epithelial cells. Flagellin also induced NLRC4-dependent production of IL-18 and immediate elimination of RV-infected cells. Administration of IL-22 and IL-18 to mice fully recapitulated the capacity of flagellin to prevent or eliminate RV infection, and thus holds promise as a broad-spectrum antiviral agent. Overall design: Total mRNA from intestinal epithelial cells of Rag1-/- mice treated with PBS, IL-18, IL-22 or IL-22/IL-18 was assayed for RNA sequencing.
Viral infection. Prevention and cure of rotavirus infection via TLR5/NLRC4-mediated production of IL-22 and IL-18.
No sample metadata fields
View SamplesPurpose: We performed a time-course single-cell RNA-seq of the somatic cells of the XX mouse gonads to study the cell population heterogeneity and the genetic program during their differentiation. Methods: We collected gonads from NR5A1-eGFP transgenic embryos at six embryonic stages: E10.5, E11.5, E12.5, E13.5, E16.5 and P6. Methods: Cells were capture with the C1 autoprep system and cDNA sequenced with Illumina HiSeq 2000. Results: One cell population was detected at E10.5 and give rise to both Granulosa and steroidogenic precursor cells. A precursor cell population remains undifferentiated at P6 and are likely to be theca cell precursors. Conclusion: Our study is, to date, the most granular transcriptomic study of the developing mouse ovary and provide a more complete model of somatic cell differentiation during female sex determination. Overall design: 663 cells were collected in total. 71 cells at E10.5, 106 cells at E11.5, 164 cells at E12.5, 106 cells at E13.5, 95 cells at E16.5, and 121 at P6. We performed two independent captures for each embryonic stage to reach a reasonable number of cells except for E10.5 where we capture enough cells in one experiment.
Dissecting Cell Lineage Specification and Sex Fate Determination in Gonadal Somatic Cells Using Single-Cell Transcriptomics.
Specimen part, Cell line, Subject
View SamplesErlotinib is a tyrosine kinase inhibitor (TKI) that is approved as a second-line monotherapy in patients with advanced non-small cell lung cancer (NSCLC). In these patients, erlotinib prolongs survival but its benefit remains modest since many tumors express wild-type EGF receptor (wtEGFR) lacking a TKI-sensitizing mutation, develop a second-site EGFR mutation, e.g., EGFR-L858R/T790M, or activate an alternate receptor tyrosine kinase, e.g., through MET amplification. To test potential drug combinations that could improve the efficacy of erlotinib, we combined erlotinib with quinacrine, which inhibits the FACT (facilitates chromatin transcription) complex that is required for nuclear factor-B (NF-B) transcriptional activity. In A549 (wtEGFR), H1975 (EGFR-L858R/T790M) and H1993 (MET amplification) NSCLC cells, the combination of erlotinib and quinacrine was highly synergistic, as quantified by Chou-Talalay combination indices. The combination inhibited colony formation, induced cell cycle arrest and apoptosis, and slowed xenograft tumor growth. Quinacrine decreased the level of active FACT subunit SSRP1 and suppressed NF-B-dependent luciferase activity. Knockdown of SSRP1 decreased cell growth and sensitized cells to erlotinib.
Quinacrine overcomes resistance to erlotinib by inhibiting FACT, NF-κB, and cell-cycle progression in non-small cell lung cancer.
Cell line, Treatment
View SamplesPersons with Down syndrome (DS) exhibit low muscle strength that significantly impairs their physical functioning. The Ts65Dn mouse model of DS also exhibits muscle weakness in vivo and may serve as a useful model to examine potential factors responsible for DS-associated muscle dysfunction. Therefore, the purpose of this experiment was to directly assess skeletal muscle function in the Ts65Dn mouse and to reveal potential mechanisms of DS-associated muscle weakness. Soleus muscles were harvested from anesthetized male Ts65Dn and wild-type (WT) colony controls. In vitro muscle contractile experiments revealed normal force generation of unfatigued Ts65Dn soleus, but a 12% reduction in force was observed in Ts65Dn muscle during recovery following fatiguing contractions compared to WT muscle (p<0.05). Oxidative stress may contribute to DS-related pathologies, including muscle weakness, which may be the result of overexpression of chromosome 21 genes (e.g., copper-zinc superoxide dismutase (SOD1)). SOD1 expression was 25% higher (p<0.05) in Ts65Dn soleus compared to WT muscle but levels of other antioxidant proteins were unchanged. Lipid peroxidation (4-hydroxynoneal) was unaltered in Ts65Dn muscle although protein carbonyls were 20% greater compared to muscle of WT animals (p<0.05). Cytochrome c oxidase expression was reduced 22% in Ts65Dn muscle, suggesting a limitation in mitochondrial function may contribute to post-fatigue muscle weakness. Microarray analysis of Ts65Dn soleus revealed alteration of numerous cellular pathways including: proteolysis, glucose and fat metabolism, neuromuscular transmission, and ATP biosynthesis. In summary, the Ts65Dn mouse displays evidence of muscle dysfunction, and the potential role of mitochondria and oxidative stress warrants further investigation.
Functional and biochemical characterization of soleus muscle in Down syndrome mice: insight into the muscle dysfunction seen in the human condition.
Sex, Age, Specimen part
View SamplesRationale: Lipopolysaccharide (LPS) is ubiquitous in the environment. Inhalation of LPS has been implicated in the pathogenesis and/or severity of several lung diseases, including pneumonia, chronic obstructive pulmonary disease and asthma. Alveolar macrophages are the main resident leukocytes exposed to inhaled antigens. Objectives: To obtain insight into which innate immune pathways become activated within human alveolar macrophages upon exposure to LPS in vivo.
Gene expression profiles in alveolar macrophages induced by lipopolysaccharide in humans.
Sex, Specimen part, Treatment, Subject
View SamplesData defines for the first time a whole bladder transcriptome of UPEC cystitis in female C57BL/6 mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization
Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.
Sex, Age, Specimen part
View SamplesData defines for the first time a whole bladder transcriptome of UPEC cystitis in female CBA mice using genome-wide expression profiling to map early host response pathways stemming from UPEC colonization
Innate transcriptional networks activated in bladder in response to uropathogenic Escherichia coli drive diverse biological pathways and rapid synthesis of IL-10 for defense against bacterial urinary tract infection.
Sex, Age
View SamplesButyrate induces Treg via HDACi activity
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.
Specimen part, Treatment
View Samples