refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 151 results
Sort by

Filters

Technology

Platform

accession-icon GSE89634
Expression data from NKG2A/C/E+ and negative CD4 effectors after influenza A infection
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

CD4 T cells can differentiate into a hetergenous population of effector T cells. A population of cytotoxic CD4 T cells can be generated against influenza challenge, however identifying these cells have been challenging. The expression of NKG2A/C/E on CD4 T cells identifies CD4 T cells with cytotoxic potential thus allowing further characterization of this subset of CD4 effector cells.

Publication Title

NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE133865
Naa10p Inhibits Beige Adipocyte-mediated Thermogenesis through N-α-acetylation of Pgc1α
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We reported that both conventional and adipose-specific Naa10p deletions in mice result in increased energy expenditure, thermogenesis, beige adipocyte differentiation and activation. Mechanistically, Naa10p acetylates the N-terminus of Pgc1α and prevents it from interacting with Ppar𝛾 to activate key genes, such as Ucp1, involved in beige adipocyte function. We used microarrays to profile the gene expression changes by Naa10p KO in inguinal white adipose tissues (iWATs) derived from mice fed with high fat diet for 15 weeks.

Publication Title

Naa10p Inhibits Beige Adipocyte-Mediated Thermogenesis through N-α-acetylation of Pgc1α.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42097
FoxO6 regulates memory consolidation and synaptic function.
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to assess gene expression differences in the hippocampus between FoxO6 mutant and wild-type siblings before (basal) or after novel object learning.

Publication Title

FoxO6 regulates memory consolidation and synaptic function.

Sample Metadata Fields

Sex, Time

View Samples
accession-icon GSE19383
Altered gene expression in normal breast and ovarian epithelial cells from BRCA1 and BRCA2 mutation carriers
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Early genetic changes during cancer initiation may provide targets for agents that delay, or even prevent, cancer. We hypothesized that cells bearing a single inherited hit in a tumor suppressor gene express an altered mRNA repertoire that may identify targets for measures that could delay or even prevent progression to carcinoma. Here, we report on the transcriptomes of primary breast and ovarian epithelial cells cultured from BRCA1 and BRCA2 mutation-carriers and controls. Our comparison analyses identified multiple changes in gene expression, in both tissues for both mutations that were independently validated by real-time RT-PCR analysis. Several of the differentially expressed genes had been previously proposed as cancer markers including, mammaglobin in breast cancer and serum amyloid in ovarian cancer. These findings demonstrate that heterozygosity for a mutant tumor suppressor gene can alter the expression profiles of phenotypically normal epithelial cells in a gene-specific manner, and that these detectable effects of one-hit represent early molecular changes in tumorigenesis that may serve as novel biomarkers of cancer risk and as targets for chemoprevention

Publication Title

Altered gene expression in morphologically normal epithelial cells from heterozygous carriers of BRCA1 or BRCA2 mutations.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP173313
Thymine DNA Glycosylase as a novel target for melanoma: effect of TDG silencing on gene expression in SK-mel-28 melanoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Melanoma is an aggressive neoplasm with increasing incidence that is classified by the NCI as a recalcitrant cancer, i.e., a cancer with poor prognosis, lacking progress in diagnosis and treatment. In addition to conventional therapy, melanoma treatment is currently based on targeting the BRAF/MEK/ERK signaling pathway and immune checkpoints. As drug resistance remains a major obstacle to treatment success, advanced therapeutic approaches based on novel targets are still urgently needed. We reasoned that the base excision repair enzyme Thymine DNA Glycosylase (TDG) could be such a target for its dual role in safeguarding the genome and the epigenome, by performing the last of the multiple steps in DNA demethylation. Overall design: Six samples : cells treated with shTDG and cells treated with shControl both in triplicates.

Publication Title

Thymine DNA glycosylase as a novel target for melanoma.

Sample Metadata Fields

Cell line, Treatment, Subject

View Samples
accession-icon GSE14221
TgFVB vs FVB 6 and 8 week kidneys
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Human Immunodeficiency Virus (HIV) associated nephropathy (HIVAN) is characterized clinically by both nephrosis and by rapidly progressive kidney dysfunction. HIVAN is characterized histologically by both collapsing focal segmental glomerulosclerosis and prominent tubular damage. Neutrophil Gelatinase Associated Lipocalin (NGAL) is known to be rapidly expressed in distal segments of the nephron at the onset of different types of acute kidney injury, but few studies have examined NGAL in chronic kidney disease models. We found that urinary NGAL (uNGAL) was highly expressed by patients with biopsy proven HIVAN, whereas HIV+ patients without HIVAN demonstrated lower levels. uNGAL was also highly expressed in the TgFVB mouse model of HIVAN, which demonstrated NGAL gene expression in dilated, microcystic segments of the nephron. These data show that NGAL is markedly upregulated in the setting of HIVAN, and suggest that uNGAL levels may provide a non-invasive screening test to detect HIVAN related tubular disease.

Publication Title

Urinary NGAL marks cystic disease in HIV-associated nephropathy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP035473
RNA-seq analysis of diabetes induced changes in macrophage transcriptome
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Macrophage dysfunction and polarization plays key role in chronic inflammation associated with diabetes and its complications. However, the effect of diabetes on macrophage transcriptome including long non-coding RNAs is not known. Here, we analyzed global changes in transcriptome of bone marrow macrophages isolated from type 2 diabetic db/db mice and control littermates db/+ mice using high throughput RNA-seq technique. Data analysis showed that expression of genes relevant to fibrosis, cell adhesion and inflammation were altered in diabetic db/db mice relative to control db/+ mice. Furthermore, expression of several known and novel long non coding RNAs and nearby genes was altered in db/db mice. Gene ontology and IPA showed activation of signaling netwroks relevant to fibrosis, cell adhesion and inflammatory pathways . This study for the first time demonstrated that diabetes profoundly affects macrophage transcriptome including expression of long non coding RNAs and altered the levels of genes relevant to diabetes complications. Overall design: Bone marrow macrophages were isolated from 12 weeks old type 2 diabetic male db/db mice and control littermates db/+ mice. These were differentiated in culture for 7-8 days in the presence of 10 ng/ml of MCSF-1 (BMMC) or 20 ng/ml of GM-CSF (BMGM). Then RNA was extracted and used for RNA-seq.

Publication Title

Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE70651
Synergistic activity of BET protein antagonist-based combinations in Mantle Cell Lymphoma cells sensitive or resistant to ibrutinib
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To determine the global transcriptome changes in mantle cell lymphoma cells following treatment with the BET bromodomain antagonist, JQ1

Publication Title

Synergistic activity of BET protein antagonist-based combinations in mantle cell lymphoma cells sensitive or resistant to ibrutinib.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE51950
Effects of BRD4 inhibition in AML
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The BET (bromodomain and extra terminal) protein family members including BRD4 bind to acetylated lysines on histones and regulate the expression of important oncogenes, e.g., MYC and BCL2. Here we demonstrate the sensitizing effects of the histone hyperacetylation inducing pan-histone deacetylase inhibitor (HDI) panobinostat (PS) on human AML blast progenitor cells (BPCs) to the BET protein inhibitor JQ1. Treatment with JQ1 but not its inactive enantiomer (R-JQ1) was highly lethal against AML BPCs expressing mutant NPM1c+ with or without co-expression of FLT3-ITD, or AML expressing MLL fusion oncoprotein. JQ1 treatment reduced binding of BRD4 and RNA polymerase II to the DNA of MYC and BCL2, and reduced their levels in the AML cells. Co-treatment with JQ1 and the HDAC inhibitor panobinostat (PS) synergistically induced apoptosis of the AML BPCs, but not of normal CD34+ hematopoietic progenitor cells. This was associated with greater attenuation of MYC and BCL2, while increasing p21, BIM and cleaved PARP levels in the AML BPCs. Co-treatment with JQ1 and PS significantly improved the survival of the NOD/SCID mice engrafted with OCI-AML3 or MOLM13 cells (p < 0.01). These findings highlight co-treatment with a BRD4 antagonist and an HDI as a potentially efficacious therapy of AML.

Publication Title

Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP169611
Next generation sequencing of human hepatic stellate cell line, LX-2 treated with recombinant human TGF-ß1, with DMSO or ML290 (5 µM) for 72h.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

The overall aim of this experiment was to identify specific genes and molecular pathways regulated by ML290, a small molecule agonist of the relaxin receptor, RXFP1, in the context of liver fibrosis. Overall design: Whole transcriptome mRNA sequencing of transformed LX-2 cells using HiSeq platforms with paired-end 150 bp (PE 150) sequencing strategy, with four biological replicates in each treatment group.

Publication Title

Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact