Huntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on tissue samples from the cortex of 2, 6, and 10 month old knock-in mice with CAG lengths of 20, 80, 92, 111, 140, 175 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
No sample metadata fields
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Corpus Striatum tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Cerebral Cortex tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesHuntington''s disease (HD) is an autosomal dominant neurodegenerative disorder that is characterized by motor, cognitive, and psychiatric alterations. The mutation responsible for this disease is an abnormally expanded and unstable CAG repeat within the coding region of the gene encoding huntingtin (Htt). Knock-in mouse models of HD with human exon 1 containing expanded CAG repeats inserted in the murine huntingtin gene (Hdh) provide a genetic reconstruction of the human causative mutation within the mouse model. The goal of this study is RNA expression profiling by RNA sequencing (RNA-seq) in 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals Overall design: mRNA expression profiles were obtained via RNA-seq analysis performed on samples from the Liver tissue of 6 and 10 month old knock-in mice with CAG lengths of 20, 50, 92, 140 along with littermate control wild-type animals.
Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice.
Sex, Age, Specimen part, Cell line, Subject
View SamplesGene expression was measured on the Affymetrix platform in primary xenografts, xenograft-derived cell lines, secondary xenografts, normal lung, and primary tumors obtained from chemotherapy naive Small Cell Lung Cancer (SCLC). The SCLC primary xenografts were serially propagated in vivo in immunodeficient mice. Cell lines were derived from each xenograft and grown for 6 months using conventional tissue culture conditions. Secondary xenografts were obtained from cell cultures by re-implantation in immunodeficient mice. Such SCLC laboratory models were analyzed along with conventional SCLC cell lines and the derivative secondary xenografts, with normal lung and primary tumors, to assess irreversible gene expression changes induced by culturing conditions.
A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro.
Disease, Disease stage, Cell line
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
Sex, Specimen part
View SamplesWe report the application of Affymetrix technology for high-throughput profiling of the transcriptome of the rheumatoid arthritis (RA) rat model induced by collagen type II (CIA), with acupuncture, Methotrexate, Isofluorane anesthetic and placebo treatments, as well as the healthy control.
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
Sex, Specimen part
View SamplesWe report the application of Illumina Hiseq2000 sequencing technology for high-throughput miRNA profiling of the rheumatoid arthritis (RA) rat model induced by collagen type II (CIA), with acupuncture and placebo treatments. Overall design: The experiment is designed as 2 arms: epidermal needle manipulation (AP/MEC) and placebo (PLA, used as control) on CIA induced rheumatoid arthritis (RA) rats. Muscle tissue samples sampling was carried out before any therapy in RA rats (RA_T0), and after at 1 hour and 34 days of therapeutic treatments for both AP and PLA. From all the 10 blood collected samples (2 replicates for each group, for each timepoint), total RNA were extracted. Finally, purified RNA were analyzed using illumina hiseq 2000).
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
No sample metadata fields
View SamplesWe report the application of Affymetrix technology for high-throughput profiling of the transcriptome of the rheumatoid arthritis (RA) rat model induced by collagen type II (CIA), with acupuncture and Methotrexate+acupuncture treatment, as well as epidermal needle manipulation on healthy rat model.
Systemic Wound Healing Associated with local sub-Cutaneous Mechanical Stimulation.
Sex, Specimen part
View SamplesBackground In flowering plants, the anther is the site of male gametophyte development. Two major events in the development of the male germline are meiosis and the asymmetric division in the male gametophyte that gives rise to the vegetative and generative cells, and the following mitotic division in the generative cell that produces two sperm cells. Anther transcriptomes have been analyzed at progressive stages of development by using microarray and sequence by synthesis technologies to identify genes that regulate anther development. Here we have carried out a comprehensive analysis of rice anther transcriptomes at four distinct stages of development with a focus to identify regulatory components contributing to male meiosis and germline development. Further, these transcriptomes have been compared with transcriptomes of 10 stages of rice vegetative and seed development to identify genes that express specifically during anther development. Results - To understand the molecular processes that lead to male gametophyte development, transcriptome profiling of four stages of anther development in rice [pre-meiotic (PMA), meiotic (MA), anthers at single-celled (SCP) and tri-nucleate pollen (TPA)] was conducted. Around 22,000 genes were found to be expressed in at least one of the anther developmental stages, with the highest number in MA (18,090) and lowest (15,465) in TPA. Comparison of these transcriptome profiles to an in-house generated microarray-based transcriptomics database comprising of 10 stages/tissues of vegetative as well as reproductive development in rice resulted in the identification of1,000 genes that are specifically expressed in anther stages. Of them the expression of 453 genes was found to be specific to TPA, whereas 78 and 184 genes were expressed specifically in MA and SCP. Gene ontology and pathway analysis of specifically expressed genes revealed that transcription factors and protein folding, sorting and degradation pathway genes dominated in MA, whereas in TPA, those coding for cell structure and signal transduction components were in abundance. Interestingly, about 50% of the genes with anther-specific expression have not been annotated so far. Conclusions - These data not only provide the transcriptome constituents of four landmark stages of anther development but also identify genes that express exclusively in these stages and therefore may contribute to specific aspects of anther and/or male gametophyte development in rice. Moreover, these gene sets assist in building a deeper understanding of underlying regulatory networks and in selecting candidates for gene function validation.
Analysis of anther transcriptomes to identify genes contributing to meiosis and male gametophyte development in rice.
Specimen part
View Samples