refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 60 results
Sort by

Filters

Technology

Platform

accession-icon SRP016583
Transcriptional Profiling of Psoriasis Using RNA-seq Reveals Previously Unidentified Differentially Expressed genes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The transcriptomic profiling of psoriasis has led to an increased understanding of disease pathogenesis. Although microarray technologies have been instrumental in this regard, it is clear that these tools detect an incomplete set of DEGs. RNA-seq can be used to supplement these prior technologies. Here, the use of RNAseq methods substantially increased the number of psoriasis-related DEGs. Furthermore, DEGs that were uniquely identified by RNA-seq, but not in other published microarray studies, further supported the role of IL-17 and tumor necrosis factor-a synergy in psoriasis. Examination of one of these factors at the protein level confirmed that RNA-seq is a powerful tool that can be used to identify molecular factors present in psoriasis lesions, and may be useful in the identification of therapeutic targets that to our knowledge have not been reported previously. Further studies are in progress to determine the biological significance of DEGs uniquely discovered by RNA-seq. Overall design: To define the transcriptomic profile of psoriatic skin, three pairs of lesional and nonlesional skin biopsy specimens were taken from patients with untreated moderate-to-severe plaque psoriasis.

Publication Title

Transcriptional profiling of psoriasis using RNA-seq reveals previously unidentified differentially expressed genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP017603
The yeast Snt2 protein helps coordinate the transcriptional response to hydrogen-peroxide mediated oxidative stress (RNA-seq)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Snt2 is a yeast chromatin-interacting protein whose function has not been well characterized, that was recently shown to associate with Ecm5 and the Rpd3 deacetylase. Using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), we show that in response to H2O2, Snt2 and Ecm5 colocalize to promoters of genes involved in various aspects of the environmental stress response. By integrating these ChIP-seq results with expression analysis, we identify a key set of target genes that require Snt2 for proper expression after H2O2 stress. Finally, by mapping Snt2 and Ecm5 localization before and after rapamycin treatment, we identify a subset of H2O2-specific Snt2 and Ecm5 target promoters that are also targeted in response to rapamycin. Our results establish a function for Snt2 in regulating transcriptional changes in response to oxidative stress, and suggest Snt2 may have a role in additional stress pathways. Overall design: RNA-seq analysis to look at gene expression levels in wild-type, snt2 deletion, or ecm5 deletion strains before or 0.5 hours after treatment with H2O2 (final concentration 0.4 mM). This sequencing was done on biological triplicate samples.

Publication Title

The yeast Snt2 protein coordinates the transcriptional response to hydrogen peroxide-mediated oxidative stress.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP041895
Engineering of a histone-recognition domain in Dnmt3a alters the epigenetic landscape of ESCs revealing changes in lineage specification and chromosomal stability (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Histone modifications and DNA methylation represent two distinct modes of varying epigenetic landscapes, but whose exact interrelationship remains unclear. Previous studies have shown that histone H3 lysine 4 trimethylation (H3K4me3) inhibits the binding of de novo DNA methyltransferases (Dnmt) through the ATRX-DNMT3-DNMTL (ADD) domain, thus protecting H3K4me3 marked CpG islands (CGI) from DNA methylation. In addition to H3K4me3, we identified antagonistic relationship between H3T3 phosphorylation and the binding of the ADD domain to the unmodified H3 N-terminus. To assess the physiological relevance of these restrictions, we engineered the wild-type ADD domain of Dnmt3a (WT) to permit additional binding to either H3K4me3 (WWD) or H3T3ph (R) and stably introduced FLAG-tagged, full-length normal or mutant Dnmt3a2 into ESCs lacking all Dnmts (TKO; triple knock-out of Dnmt1, Dnmt3a, and Dnmt3b) using the PiggyBac transposon system. For each WT-, WWD-, and R-Dnmt3a2, we generated bulk and clonally-derived ESC lines. We then employed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) to identify the genomic distribution of full-length WT-, WWD-, R-Dnmt3a2, and the H3K4me3 distribution. In parallel, we quantitatively measured genome-wide CpG (cytosine) methylation at base-pair resolution using an enhanced form of reduced representation bisulfite sequencing (RRBS), and performed RNA-seq to assess transcription in matched ESC lines. Overall design: Examination of mRNA profiles in Dnmt TKO-ESCs expressing wild-type/mutant Dnmt3a2.

Publication Title

Engineering of a Histone-Recognition Domain in Dnmt3a Alters the Epigenetic Landscape and Phenotypic Features of Mouse ESCs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE84245
PRC2 controls adult neuron identity and protects neurons against neurodegeneration
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE84243
Microarray analysis of striatal tissue of wild type and Ezh1/Ezh2 dKO mice at 6 weeks, 3 months, and 6 months
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Normal brain function critically depends on the interaction between highly specialized neurons that operate within anatomically and functionally distinct brain regions. The fidelity of neuronal specification is contingent upon the robustness of the transcriptional program that supports the neuron type-specific patterns of gene expression. Changes in neuron type-specific gene expression are commonly associated with neurodegenerative disorders including Huntingtons and Alzheimers disease. The neuronal specification is driven by gene expression programs that are established during early stages of neuronal development and remain in place in the adult brain. Here we show that the Polycomb repressive complex 2 (PRC2), which supports neuron specification during early differentiation, contributes to the suppression of the transcription program that can be detrimental for the adult neuron function. We show that PRC2 deficiency in adult striatal neurons and in cerebellar Purkinje cells impairs the maintenance of neuron-type specific gene expression. The deficiency in PRC2 has a direct impact on a selected group of genes that is dominated by self-regulating transcription factors normally suppressed in these neurons. The age-dependent progressive transcriptional changes in PRC2-deficient neurons are associated with impaired neuronal function and survival and lead to the development of fatal neurodegenerative disorders in mice.

Publication Title

Polycomb repressive complex 2 (PRC2) silences genes responsible for neurodegeneration.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22852
Gastrointestinal stromal tumor GIST: gene expresssion and ChIP analyses
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE19396
ETV1 knockdown in GIST cell lines
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

ETV1 is highly expressed in GIST cells and required for their survival and growth. To identify genes and pathways regulated by ETV1 in GIST, we performed expression profiles of GIST cells after ETV1 knockdown.

Publication Title

ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE39686
FMR1 targets distinct mRNA sequence elements to regulate protein expression
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

FMRP targets distinct mRNA sequence elements to regulate protein expression.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE22433
Imatinib Treatment of GIST882
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Gastrointestinal Stromal Tumor frequently harbor mutations in the KIT receptor tyrosine kinase and depend on its activity for growth. This underlies the efficacy of imatinib, a inhibitor of KIT activity, in GIST management. GIST882 is a patient derived GIST cell line that harbor a K640E exon 13 KIT mutation and is sensitive to imatinib treatment. To analyze the downstream effect of KIT inhibition, GIST882 cells were treated for 8 hours with 1M Imatinib.

Publication Title

ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE39504
FMR1 targets distinct mRNA sequence elements to regulate protein expression [Affymetrix]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Fragile-X Syndrome (FXS) is a multi-organ disease leading to mental retardation, macro-orchidism in males, and premature ovarian insufficiency in female carriers. FXS is also a prominent monogenic disease associated with autism spectrum disorders (ASD). FXS is typically caused by the loss of FRAGILE X-MENTAL RETARDATION 1 (FMR1) expression, which encodes for the RNA-binding protein (RBP), FMR1 (or FMRP). We report the discovery of the RNA recognition elements (RREs), binding sites, and mRNA targets for wild-type and I304N mutant FMRP isoforms as well as its paralogs, FXR1 and FXR2. RRE frequency, ratio, and distribution determine target mRNA association with FMRP. Among highly-enriched targets, we identified many genes involved in ASD and demonstrate that FMRP can affect their protein levels in cell culture, mice, and human brain. Unexpectedly, we discovered that these targets are also dysregulated in Fmr1-/- mouse ovaries, showing signs of premature follicular overdevelopment. These results indicate that FMRP targets shared signaling pathways across different cellular contexts. As it is become increasingly appreciated that signaling pathways are important to FXS and ASD, our results here provide an invaluable molecular guide towards the pursuit of novel therapeutic targets for these devastating neurological disorders.

Publication Title

FMRP targets distinct mRNA sequence elements to regulate protein expression.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact