Recessive dystrophic epidermolysis bullosa (RDEB) is a genodermatosis characterized by fragile skin forming blisters that heal invariably with scars. It is due to mutations in the COL7A1 gene encoding type VII collagen, the major component of anchoring fibrils connecting the cutaneous basement membrane to the dermis. Identical COL7A1 mutations often result in inter- and intra-familial disease variability, suggesting that additional modifiers contribute to RDEB course. Here, we studied a monozygotic twin pair with RDEB presenting markedly different phenotypic manifestations, while expressing similar amounts of collagen VII. Genome-wide expression analysis in twins' fibroblasts showed differential expression of genes associated with TGF- pathway inhibition. In particular, decorin, a skin matrix component with anti-fibrotic properties, was found to be more expressed in the less affected twin. Accordingly, fibroblasts from the more affected sibling manifested a profibrotic and contractile phenotype characterized by enhanced -smooth muscle actin and plasminogen activator inhibitor 1 expression, collagen I release and collagen lattice contraction. These cells also produced increased amounts of proinflammatory cytokines interleukin 6 and monocyte chemoattractant protein-1. Both TGF- canonical (Smads) and non-canonical (MAPKs) pathways were basally more activated in the fibroblasts of the more affected twin. The profibrotic behaviour of these fibroblasts was suppressed by decorin delivery to cells. Our data show that the amount of type VII collagen is not the only determinant of RDEB clinical severity, and indicate an involvement of TGF- pathways in modulating disease variability. Moreover, our findings identify decorin as a possible anti-fibrotic/inflammatory agent for RDEB therapeutic intervention.
Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity.
Specimen part, Disease
View SamplesCcnyl1 is a newly identified genes, but the founction of which remained unclear, here we used the Ccnyl1 knockout mice to finding clues for its functional roles
CCNYL1, but Not CCNY, Cooperates with CDK16 to Regulate Spermatogenesis in Mouse.
Specimen part
View SamplesInvestigate the effect of jhdm1b on Oct4 mediated reprogramming
The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner.
Specimen part, Treatment
View SamplesFOXO1 acts as a tumor suppressor in solid tumors. The oncogenic PI3K pathway suppresses FOXO1 transcriptional activity by enforcing its nuclear exclusion upon AKT-mediated phosphorylation. We show here abundant nuclear expression of FOXO1 in Burkitt lymphoma (BL), a germinal center (GC) B cell derived lymphoma whose pathogenesis is linked to PI3K activation. Recurrent FOXO1 mutations which prevent AKT targeting and lock the transcription factor in the nucleus are used by BL to circumvent mutual exclusivity between PI3K and FOXO1 activation. Using genome editing in human and mouse lymphomas in which MYC and PI3K cooperate synergistically in tumor development we demonstrate pro-proliferative and anti-apoptotic activity of FOXO1 in BL and identify its nuclear localization as an oncogenic event in GC B cell derived lymphomagenesis.
Nuclear FOXO1 promotes lymphomagenesis in germinal center B cells.
Specimen part, Cell line
View SamplesComparison of transcriptome between control and Tcf1/Lef1-deficient mature CD8 thymocytes Overall design: Control mice or those are deficient for Tcf1 and Lef1 transcription factors (deleted by CD4-Cre) were used to isolate thymocytes. The thymocytes were surface-stained to identify TCRbeta high, CD69–, CD24– CD8+ subsets. These cells were sorted for RNAseq analysis.
Tcf1 and Lef1 transcription factors establish CD8(+) T cell identity through intrinsic HDAC activity.
Specimen part, Subject
View SamplesNasopharyngeal carcinoma is an Epstein-Barr virus-associated epithelial cancer with high prevalence in Southeast Asia. mRNA expression levels were measured for essentially all human genes in nasopharyngeal carcinoma tissue samples and normal nasopharyngeal tissues. Data were analyzed for differential gene expression between tumor and normal tissue.
Upregulated long non-coding RNA AFAP1-AS1 expression is associated with progression and poor prognosis of nasopharyngeal carcinoma.
Disease, Disease stage
View SamplesRecently, the p53-miR-34a network was identified to play an important role in tumorigenesis. As in acute myeloid leukemia with complex karyotype (CK-AML) TP53 alterations are the most common known molecular lesion, we further analyzed the p53-miR-34a axis in CK-AML with known TP53 status. Clinically, low miR-34a expression and TP53 alterations predicted for chemotherapy resistance and inferior outcome. Notably, in TP53unaltered CK-AML high miR-34a expression predicted for inferior overall survival (OS), whereas in TP53biallelic altered CK-AML high miR-34a expression pointed to better OS.
Altered miRNA and gene expression in acute myeloid leukemia with complex karyotype identify networks of prognostic relevance.
Disease
View SamplesMany neural progenitor cells present in the fetus, but also in adult brain, which play a major role for the reproduction for healingin regeneration of neuronal cells, when differentiated cells are damaged. However, effects of radiation effect on undifferentiated neural progenitor cells remained unclear. The radiation doses of medical exposure, pollution by nuclear power plant accidents, and other exposure of workers; medical workers, airline crews, and astronaut have been focused. In this study, we report the effects of low- to middle- dose doses of radiation on cultured human neural progenitor cells (hNPC) differentiated derived from embryonic stem (ES) cells, which are partially compared with those of human umbilical vein endothelial cell (HUVEC).
Effects of Chronic Low-Dose Radiation on Human Neural Progenitor Cells.
Specimen part, Cell line
View SamplesTwist is a key EMT inducer, expression of Twist will induce EMT in HMLE and breast tumor T47D cells
Disrupting the interaction of BRD4 with diacetylated Twist suppresses tumorigenesis in basal-like breast cancer.
Specimen part, Cell line, Treatment
View SamplesThe human RNA polymerase II-associated factor complex (hPAFc) and its individual subunits have been implicated in human diseases including cancer. However, its involvement in breast cancer cells awaits investigation. Using data mining and human breast cancer tissue microarrays, we found that Ctr9, the key scaffold subunit in hPAFc, is highly expressed in ER+ luminal breast cancer and the high expression of Ctr9 correlates with poor prognosis. Knockdown of Ctr9 in ER+ breast cancer cells almost completely erased estrogen regulated transcriptional response. At the molecular level, Ctr9 enhances ER protein stability, promotes recruitment of ER and RNAPII and stimulates transcription elongation and transcription-coupled histone modifications. Knockdown of Ctr9, but not other hPAFc subunits, alters the morphology, proliferative capacity and tamoxifen-sensitivity of ER+ breast cancer cells. Together, our study reveals that Ctr9, a key subunit of hPAFc, is a central regulator of estrogen signaling that drives ER+ breast tumorigenesis, rendering it a potential target for the treatment of ER+ breast cancer.
Ctr9, a key subunit of PAFc, affects global estrogen signaling and drives ERα-positive breast tumorigenesis.
Specimen part, Cell line
View Samples