Purpose: the goal of this experiment was to identify differentially expressed genes in Six3 null, Six6 null and Six3;Six6 compound null retinas by RNAsequencing. Method: Retinas were dissected out from the following E13.5 mouse embryos: 1) WT (Six3F/F; Six6+/+); 2) Six3 KO (Six3F/F; CAGGCre-ERTM; Six6+/+); 3) Six6 KO (Six3F/F; Six6–/–); 4) DKO (Six3F/F; CAGGCre-ERTM; Six6–/–). RNA was then extracted from the retinas and profiled using RNAsequencing. Results: RNA isolated from three pairs of retinas for each genotype group (181.2-792 ng, RIN>9) was used for library preparation using KAPA RNA HyperPrep Kit with RiboErase. Sequencing was run on Illumina HiSeq 2500 in 100-bp single-end high-output mode in the Einstein Epigenomics Core Facility. About 30 million reads were generated for each sample. Each genotype group initially had three biological replicates, but one Six6 KO replicate was later removed due to over duplication. After trimming adapters with Trim Galore (v. 0.3.7), RNA-Seq reads were aligned back to mouse genome mm10 using Tophat (v. 2.0.13). The number of reads mapped back to each gene was calculated with HTseq (v.0.6.1) using Refseq gene annotation (downloaded from the UCSC genome browser in 03/17). The Cuffdiff in Cufflinks package (v. 2.2.1) was used to generate FPKM values. We identified 13498 transcripts with FPKM value >1 in at least one of samples. Deseq2 was used to determine the differentially expressed genes (DEGs) with FDR less than 0.05 as a cutoff. Overall design: Three pairs of retinas from each genotype were analyzed (n=3 biological replicates). One Six6 KO sample was later removed due to high duplication. Six3KO, Six6KO and DKO samples were compared to WT Controls (Six3F/F) using DESeq2, respectively .
Six3 and Six6 Are Jointly Required for the Maintenance of Multipotent Retinal Progenitors through Both Positive and Negative Regulation.
Specimen part, Cell line, Subject
View SamplesThe Mrp8 and Mrp14 proteins (calprotectin) accumulate within tissues during aging and may contribute to chronic inflammation. To address this possibility, we evaluated calprotectin-deficient Mrp14-KO and wild-type (WT) mice at 5 and 24 months of age. However, there was no evidence that age-related inflammation is blunted in KO mice. Inflammation makers were in fact elevated in livers from old KO mice, and microarray analysis revealed more consistent elevation of genes specifically expressed by B-cells and T-cells. Adipose-specific genes, however, were less consistently elevated in aged KO mice, suggesting an anti-steatosis effect of Mrp8/14 deficiency. Consistent with this, genes decreased by the anti-steatosis agent SRT1720 were decreased in old KO compared to old WT mice. Expression of lipid metabolism genes was altered in KO mice at 5 months of age, along with genes associated with development, biosynthesis and immunity. These early-age effects of Mrp8/14 deficiency, in the absence of any external stressor, were unexpected. Taken together, our findings demonstrate a pro-steatosis rather than pro-inflammatory role of calprotectin within the aging liver. This appears to reflect a developmental-metabolic phenotype of Mrp14-KO mice that is manifest at a young age in the absence of pro-inflammatory stimuli.
Deficiency of myeloid-related proteins 8 and 14 (Mrp8/Mrp14) does not block inflammaging but prevents steatosis.
Specimen part
View SamplesBackground: Imiquimod (IMQ) produces a cutaneous phenotype in mice frequently studied as an acute model of human psoriasis. Whether this phenotype depends on strain or sex has never been systematically investigated on a large scale. Such effects, however, could lead to conflicts among studies, while further impacting study outcomes and efforts to translate research findings. Methods: RNA-seq was used to evaluate the psoriasiform phenotype elicited by IMQ in both sexes of 7 mouse strains (C57BL/6J, BALB/cJ, CD1, DBA/1J, FVB/NJ, 129X1/SvJ and MOLF/EiJ). Results: In most strains, IMQ altered gene expression in a manner consistent with human psoriasis, partly due to innate immune activation and decreased homeostatic gene expression. The IMQ response of MOLF males was aberrant, however, with decreased expression of differentiation-associated genes (elevated in other strains). Key aspects of the IMQ response differed between the two most commonly studied strains (BALB/c and C57BL/6). Compared with BALB/c, the C57BL/6 phenotype showed increased expression of genes associated with DNA replication, IL-17A activation and CD8+ T cells, but decreased expression of genes associated with interferon signaling and CD4+ T cells. Surprisingly, although IMQ-induced expression shifts mirrored psoriasis, correspondence was similar or better for other human skin diseases (e.g., eschars, acne, atopic dermatitis). For BALB/c, MOLF, and 129X1 strains, genes altered by IMQ corresponded better to those altered in human skin infections or wounds compared with those altered in psoriasis lesions. Conclusions: These findings demonstrate strain-dependent aspects of IMQ dermatitis that warrant consideration in planning and interpreting experimental studies. We have further shown that IMQ does not uniquely model psoriasis but in fact triggers a core set of pathways active in diverse skin diseases. These observations challenge the view of IMQ dermatitis as a mouse phenotype uniquely appropriate for studying psoriasis as opposed to other human skin conditions. Overall design: RNA-seq was used to investigate the psoriasiform phenotype that develops following topical IMQ treatment in male and female mice of 7 laboratory mouse strains (C57BL/6J, BALB/cJ, CD1, DBA/1J, FVB/NJ, 129X1/SvJ and MOLF/EiJ). Mouse back skin was treated with 62.5 mg AldaraTM (5% IMQ) or a non-toxic lanolin-derived occlusion cream (CTL) once per day for 5 consecutive days. Mice were sacrificed on day 6 and skin biopsies were collected. Overall, RNA-seq was used to profile transcriptomes of 56 CTL- and IMQ-treated skin samples (7 strains × 2 sexes × 2 treatments; n = 2 samples per strain/sex/treatment combination).
Imiquimod has strain-dependent effects in mice and does not uniquely model human psoriasis.
Sex, Cell line, Treatment, Subject
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.
Sex, Age, Specimen part, Subject
View SamplesIL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36//, Il24, epigen and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective.
Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.
Sex, Age, Specimen part
View SamplesThe Wnt/beta-catenin pathway is required for the development of leukemia stem cells in MLL-AF9 AML.
KRas(G12D)-evoked leukemogenesis does not require β-catenin.
Specimen part
View SamplesCoupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. The metamorphosis of the fruit fly represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, the mechanisms that coordinate development and immune cell activity in the transition from larva to adult in Drosophila remain to elucidate. The steroid hormone ecdysone is known to act as a key coordinator of metamorphosis. This hormone activates a nuclear receptor, the Ecdysone Receptor (EcR), which acts as a heterodimer with its partner Ultraspiracle (USP). Together, they activate the transcription of primary response genes, which in turn activate the transcription of a battery of late response genes. We have revealed that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. We have shown that in response to ecdysone signalling, hemocytes rapidly up regulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential to hemocyte immune functions and survival after infection.
Steroid hormone signaling is essential to regulate innate immune cells and fight bacterial infection in Drosophila.
Specimen part
View SamplesAim: Transcriptional analysis of the duodenum of adult Nkx2.2flox/SD;Villin-Cre (SDint) mice versus control Methods: 2 cm of the duodenum (as measured from the stomach) of 6 week old control and mutant mice were dissected and total RNA extracted. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq. Results: 206 genes with a p-value <0.05 were significantly changed. Among these are some enteroendocrine hormones. Conclusion: The SD domain of Nkx2.2 regulates specification of some enteroendocrine cells Overall design: mRNA profiles of the duodenum of 6 week old control and SDint mice were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
The novel enterochromaffin marker Lmx1a regulates serotonin biosynthesis in enteroendocrine cell lineages downstream of Nkx2.2.
Specimen part, Cell line, Subject
View SamplesAim: Transcriptional analysis of the colon of adult Nkx2.2flox/flox;Villin-Cre (Nkx2.2int) mice versus control Methods: 2 cm of the colon (as measured after the caecum) of 6 week old control and mutant mice were dissected and total RNA extracted. Libraries were prepared from total RNA (RIN>8) with the TruSeq RNA prep kit (Illumina) and sequenced using the HiSeq2000 (Illumina) instrument. More than 20 million reads were mapped to the mouse genome (UCSC/mm9) using Tophat (version 2.0.4) with 4 mismatches and 10 maximum multiple hits. Significantly differentially expressed genes were calculated using DEseq. Results: 53 genes with a p-value <0.05 were down-regulated and 36 were up-regulated. Among the changed genes are enteroendocrine hormones. Conclusion: Nkx2.2 regulates enteroendocrine cell specification Overall design: mRNA profiles of the colon of 6 week old control and Nkx2.2int mice were generated by deep sequencing, using Illumina HiSeq2000.
The novel enterochromaffin marker Lmx1a regulates serotonin biosynthesis in enteroendocrine cell lineages downstream of Nkx2.2.
Specimen part, Cell line, Subject
View SamplesWe have performed a genome-wide analysis of common genetic variation controlling differential expression of transcript isoforms in the CEU HapMap population using a comprehensive exon tiling microarray covering 17,897 genes. We detected 324 genes with significant associations between flanking SNPs and transcript levels. Of these, 39% reflected changes in whole gene expression and 55% reflected transcript isoform changes such as splicing variants (exon skipping, alternate splice site usage, intron retention), differential 5 UTR (initiation of transcription) usage, and differential 3 UTR (alternative polyadenylation) usage.
Genome-wide analysis of transcript isoform variation in humans.
Sex
View Samples