The acute respiratory distress syndrome (ARDS) is a highly lethal syndrome characterized by hypoxemia and bilateral lung infiltrates in response to an inciting event such as sepsis. Allogeneic bone marrow transplantation (BMT) is a life-saving treatment for patients with hematologic malignancies that can be complicated by ARDS. We sought to identify blood gene expression signatures that distinguish whether ARDS in BMT may be a distinct pathobiologic entity from ARDS in non-BMT patients. RNA-Seq was used to measure whole blood transcript expression differences between 26 patients meeting the Berlin definition of ARDS: 8 patients without BMT and 5 BMT patients with ARDS from the Brigham and Women's Registry of Critical Illness (RoCI), as well as 7 non-BMT patients with sepsis and 6 BMT patients with sepsis. RNA was globin cleared using the Ambion GLOBINclear kit prior to preparation of poly(A)-selected RNA-Seq libraries with the Illumina TruSeq method. An Illumina HiSeq 2500 instrument was used to generate 75 base pair paired-end reads, which were aligned to the hg38 reference genome using STAR. Differential expression analysis was performed using DESeq2. Overall design: mRNA profiles obtained via RNA-Seq for whole blood samples from ARDS patients with and without BMT
Whole blood RNA sequencing reveals a unique transcriptomic profile in patients with ARDS following hematopoietic stem cell transplantation.
Specimen part, Disease, Subject
View SamplesPurpose: Guided by an in silico combination of microRNA (miRNA) target prediction, analysis of transcriptomic changes in 137 human diseases, and advanced gene network modeling, we predicted the miR-130/301 family of miRNAs as a shared regulator of a fibrotic gene network across human diseases, thus orchestrating broad control over disease manifestation. The goals of this study are to compare the lung mRNA profile of mouse model of Pulmonary hypertension, one of the most fibrotic pathology uncovered by our in silico prediction, treated with an inhibitor of miR-130/301 (Short-130) to mice treated with a control inhibitor (Short-NC). Methods: Eight-week-old mice (C57BL/6) were injected with SU5416 (20 mg/kg/dose; Sigma-Aldrich), followed by exposure to normobaric hypoxia (10% O2; OxyCycler chamber, Biospherix Ltd.) for 2 weeks. After 2 weeks and confirmation of PH development in 5 mice (right heart catheterization), mice were further treated with 3 intrapharyngeal injections (every 4 days) of control or miR-130/301 shortmer oligonucleotides, designed as fully modified antisense oligonucleotides complementary to the seed sequence of the miR-130/301 miRNA family (10 mg/kg/dose; Regulus). Specifically, the control and miR-130/301 shortmer oligonucleotides were nontoxic, lipid-permeable, high-affinity oligonucleotides. The miR-130/301 shortmer carried a sequence complementary to the active site of the miR-130/301 miRNA family, containing a phosphorothioate backbone and modifications (fluoro-, methoxyethyl, and bicyclic sugar) at the sugar 2' position. Three days after the last injection, right heart catheterization was performed followed by harvesting of lung tissue for RNA extraction. Lung mRNA profiles of those mice or control mice (Normoxia+SU5416) were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000. The sequence reads that passed quality filters were analyzed at the gene-level count. The gene level counts were then normalized with the R/Bioconductor package limma using the voom /variance stabilization method. The data were quality controlled for outliers using principal component analysis (PCA). Differential expression analysis between transcriptome profiles of experimental groups was performed using the R / Bioconductor package limma. Results: Transcriptomic analyses of whole lung from mice with hypoxia+SU5416-induced PH revealed a generalized de-repression of miR-130/301 targets by Short-130 treatment. Importantly, although whole lung transcriptomics likely captured only a subset of the miR-130/301 targets affecting the diseased pulmonary vasculature, pathway enrichment nonetheless revealed pronounced representation of several pathways known to be involved in fibrosis. Thus, the miR-130/301 family indeed induces a programmatic shift at the molecular level toward the fibrotic pathophenotype in vivo Overall design: Whole lung mRNA profiles of Normoxia (Control) and hypoxia+SU5416-induced PH mice treated with Short-NC or Short-130 were generated by deep sequencing, in triplicate, using Illumina HiSeq 2000.
Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit.
No sample metadata fields
View SamplesAn assessment of a role of Ebf1 in committed B lineage cells.
Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells.
Specimen part
View SamplesFbw7, the substrate recognition subunit of SCF(Fbw7) ubiquitin ligase, mediates turnover of multiple proto-oncoproteins and promotes its own degradation. Fbw7-mediated substrate degradation is antagonized by the Usp28 deubiquitinase. We now show, using knockout mice, that Usp28 preferentially deubiquitinates and stabilizes Fbw7. Monoallelic deletion of Usp28 maintains stable Fbw7 but destabilizes Fbw7 substrates. In contrast, complete knockout of Usp28 promotes Pin1-dependent autocatalytic turnover of Fbw7, accumulation of Fbw7 substrates and oncogenic transformation. Overexpression of Usp28 stabilizes both Fbw7 and its substrates and similarly enhances transformation. We propose that dual regulation of Fbw7 activity by Usp28 maintains physiological levels of Fbw7 substrates, and that both loss and overexpression of Usp28 in human cancer promote Fbw7 substrate accumulation. Overall design: RNAseq experiments of E13.5 murine embryonic fibroblasts (MEFs) derived from animals in which Usp28 was either deleted (-/-), wildtype (+/+) or heterozygous (+/-). In a first set of experiments immortalized MEFs of all three genotypes were analysed in biological triplicates. In a second set of experiments immortalized and Ras transformed MEFs of all three genotypes and MEFs which overexpress USP28 (+/+/+) where sequenced in duplicates.
Dual regulation of Fbw7 function and oncogenic transformation by Usp28.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View SamplesMicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to viral-associated diseases involving members of the hepacivirus, herpesvirus, and retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the lifecycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenic swine-origin influenza A virus (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral lifecycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time-points during the viral lifecycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal- and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View Samples[Hela cells]: We performed cdr2 knockdown with a pool of 4 cdr2-specific siRNAs to test whether cdr2 may regulate c-myc target genes as cells passage through mitosis.
The onconeural antigen cdr2 is a novel APC/C target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells.
Cell line
View SamplesCharacterization of intraepithelial ILC on the basis of CD8 and Ly49E expression
A Murine Intestinal Intraepithelial NKp46-Negative Innate Lymphoid Cell Population Characterized by Group 1 Properties.
Specimen part
View SamplesTo characterize the transcriptional program that governs terminal granulocytic differentation in vivo, we performed comprehensive microarray analysis of human bone marrow population highly enriched for promyelocytes, myelocytes / metamyelocytes and neotrophils.
Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum.
Specimen part
View SamplesExperimental autoimmune uveitis (EAU) in Lewis rats is a model for the clinical heterogeneity of human uveitis. The autoantigens inducing disease in the rat are also seen in human disease. Depending upon the specific autoantigen used, the experimental disease course can be either monophasic or relapsing/remitting and appears to be dictated by the T cell effector phenotype elicited. We investigated potential differences between monophasic and relapsing/remitting effector T cells using transcriptomic profiling and pathway analysis. RNA samples isolated from three independent T cell lines derived from each specificity where analyzed by microarrays.
Effector T cells driving monophasic vs. relapsing/remitting experimental autoimmune uveitis show unique pathway signatures.
Specimen part
View Samples