This SuperSeries is composed of the SubSeries listed below.
Robust enumeration of cell subsets from tissue expression profiles.
Specimen part, Disease, Disease stage
View SamplesWe introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA specimens for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
Robust enumeration of cell subsets from tissue expression profiles.
Specimen part, Disease, Disease stage
View SamplesWe introduce CIBERSORT, a method for characterizing cell composition of complex tissues from their gene expression profiles. When applied to enumeration of hematopoietic subsets in RNA mixtures from fresh, frozen, and fixed tissues, including solid tumors, CIBERSORT outperformed other methods with respect to noise, unknown mixture content, and closely related cell types. CIBERSORT should enable large-scale analysis of RNA specimens for cellular biomarkers and therapeutic targets (http://cibersort.stanford.edu).
Robust enumeration of cell subsets from tissue expression profiles.
Specimen part, Disease
View SamplesIn human breast cancers, a phenotypically distinct minority population of tumorigenic cancer (TG) cells (sometimes referred to as cancer stem cells) drives tumor growth when transplanted into immunodeficient mice. Our objective was to identify a mouse model of breast cancer stem cells that could have relevance to studying human breast cancer. To do so, we utilized breast tumors of the MMTVWnt-1 mice. MMTV-Wnt-1 breast tumors were harvested, dissociated into single cell suspensions, and FACS sorted on Thy1, CD24, and CD45. FACS sorted cells were then injected into recipient background FBV/NJ female mice. Thy1+CD24+ cancer cells, which constitute approximately 1-4% of tumor cells were highly enriched for cells capable of regenerating new tumors when compared to cells of the tumor that did not fit this profile (Not Thy1+CD24+). Resultant tumors were of the same phenotypic diversity as the original tumor and behaved in a similar manner when passaged. Microarray analysis comparing Thy1+CD24+ tumor cells to Not Thy1+CD24+ cells identified a list of differentially expressed genes. Orthologs of these differentially expressed genes predicted survival of human breast cancer patients from two different study groups. These studies suggest that there is a cancer stem cell compartment in the MMTV-Wnt-1 murine breast tumor and that there is a clinical utility of this model for the study of cancer stem cells.
Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors.
No sample metadata fields
View SamplesComparison of mRNA expression from FACS isolated Gli1 expressing stromal cells from mice given SAG21k versus vehicle
Control of inflammation by stromal Hedgehog pathway activation restrains colitis.
Sex, Specimen part, Treatment
View SamplesComparative analysis of mRNA from colons of mice that were given colitis though use of 5% dextran sulfate in the drinking water (Days 0-5)
Control of inflammation by stromal Hedgehog pathway activation restrains colitis.
Sex, Specimen part, Treatment
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View SamplesMicroRNAs (miRNAs) repress the expression levels of genes by binding to mRNA transcripts, acting as master regulators of cellular processes. Differential expression of miRNAs has been linked to viral-associated diseases involving members of the hepacivirus, herpesvirus, and retrovirus families. In contrast, limited biological and molecular information has been reported on the potential role of cellular miRNAs in the lifecycle of influenza A viruses (infA). In this study, we hypothesize that elucidating the miRNA expression signatures induced by low-pathogenic swine-origin influenza A virus (S-OIV) pandemic H1N1 (2009) and highly pathogenic avian-origin (A-OIV) H7N7 (2003) infections could reveal temporal and strain-specific miRNA fingerprints during the viral lifecycle, shedding important insights into the potential role of cellular miRNAs in host-infA interactions. Using a microfluidic microarray platform, we profiled cellular miRNA expression in human A549 cells infected with S- and A-OIVs at multiple time-points during the viral lifecycle, including global gene expression profiling during S-OIV infection. Using target prediction and pathway enrichment analyses, we identified the key cellular pathways associated with the differentially expressed miRNAs and predicted mRNA targets during infA infection, including immune system, cell proliferation, apoptosis, cell cycle, and DNA replication and repair. By identifying the specific and dynamic molecular phenotypic changes (microRNAome) triggered by S- and A-OIV infection in human cells, we provide experimental evidence demonstrating a series of temporal- and strain-specific host molecular responses involving different combinatorial contributions of multiple cellular miRNAs. Our results also identify novel potential exosomal miRNA biomarkers associated with pandemic S-OIV and deadly A-OIV-host infection.
Temporal- and strain-specific host microRNA molecular signatures associated with swine-origin H1N1 and avian-origin H7N7 influenza A virus infection.
Cell line
View Samples[Hela cells]: We performed cdr2 knockdown with a pool of 4 cdr2-specific siRNAs to test whether cdr2 may regulate c-myc target genes as cells passage through mitosis.
The onconeural antigen cdr2 is a novel APC/C target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells.
Cell line
View SamplesModerate alcohol consumption during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse moder of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear.
Long-term alterations to the brain transcriptome in a maternal voluntary consumption model of fetal alcohol spectrum disorders.
Treatment
View Samples