More than 7% of the Pseudomonas aeruginosa genes are encoding transcriptional regulators, many of which with unknown functions. Among them, those belonging to the LysR family are the most represented. The PA4203 gene lies upstream of the previously characterized ppgL gene (PA4204), which encodes a periplasmic gluconolactonase, which detoxifies gluconolactone by converting it to gluconate. Upstream of PA4203 and in the opposite orientation are the PA4202 gene coding for a nitronate monooxygenase and ddlA (PA4201) encoding a D-alanine alanine ligase. This genetic organization is conserved in all P. aeruginosa genomes, but not in other pseudomonads. The intergenic regions between PA4203 and ppgL, and PA4202 are very short (79 and 107 nucleotides, respectively). PA4203 is a repressor of PA4202 and of its own transcription. A chromatin immunoprecipation analysis confirmed the presence of a single PA4203 binding site between PA4202 and PA4203. Electrophoretic mobility shift assays (EMSAs) with the purified PA4203 protein and in41 gel footprinting with the 1, 10-phenanthroline-copper ion, combined with primer extension analysis to determine transcriptional startpoints allowed the identification of a LysR binding motive in the PA4202 and PA4203 intergenic region. Despite this, a transcriptome analysis revealed more genes to be affected in a PA4203 mutant, likely due to the overexpression of the nitronate monooxygenase (PA4202). Deletion of the PA4202 gene resulted in an increased sensitivity of the cells to 3- nitropropionic acid (3-NPA).
Pseudomonas aeruginosa LysR PA4203 regulator NmoR acts as a repressor of the PA4202 nmoA gene, encoding a nitronate monooxygenase.
No sample metadata fields
View SamplesMicroarray gene expression profiling reveals that PHGDH inhibition by NCT-503 activates a metabolic stress response characterized by downregulation of cell cycle genes and induction of stress response genes.
Metabolic Reprogramming by MYCN Confers Dependence on the Serine-Glycine-One-Carbon Biosynthetic Pathway.
Specimen part, Cell line
View SamplesProteome and transcriptome often show poor correlation, hindering the system-wide analysis of post-transcriptional regulation. Here, the authors study proteome and transcriptome dynamics during Drosophila embryogenesis and present basic mathematical models describing the temporal regulation of most protein-RNA pairs. Overall design: Whole embryos of Drosophila melanogaster measured at 14 time points during the first 20h of development (0h, 1h, 2h, 3h, 4h, 5h, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h). Each sample was measured in biological quadruplicates. RNAseq samples correspond to proteome measurements deposited in ProteomeXchange as PXD005713.
Quantifying post-transcriptional regulation in the development of Drosophila melanogaster.
Specimen part, Cell line, Subject
View SamplesThe macrophage-Brucella interaction is critical for the establishment of a chronic Brucella infection. Smooth virulent B. suis strain 1330 (S1330) prevents macrophage cell death. However, rough attenuated B. suis strain VTRS1 induces strong macrophage cell death. To further investigate the mechanism of VTRS1-induced macrophage cell death, microarrays were used to analyze temporal transcriptional responses of murine macrophage-like J774. A1 cells infected with S1330 or VTRS1.
Proinflammatory caspase-2-mediated macrophage cell death induced by a rough attenuated Brucella suis strain.
Cell line, Treatment
View SamplesMEIS2 has an important role in development and organogenesis, and is implicated in the pathogenesis of human cancer. The molecular basis of MEIS2 action in tumorigenesis is not clear. Here, we show that MEIS2 is highly expressed in human neuroblastoma cell lines and is required for neuroblastoma cell survival and proliferation. Depletion of MEIS2 in neuroblastoma cells leads to M phase arrest and mitotic catastrophe, whereas ectopic expression of MEIS2 markedly enhances neuroblastoma cell proliferation, anchorage-independent growth, and tumorigenicity. Gene expression profiling reveals an essential role of MEIS2 in maintaining the expression of a large number of late cell cycle genes, including those required for DNA replication, G2-M checkpoint control and M phase progression. Importantly, we identify MEIS2 as a transcription activator of the MuvB-BMYB-FOXM1 complex that functions as a master regulator of mitotic gene expression. Further, we show that FOXM1 is a direct target gene of MEIS2 and is required for MEIS2 to upregulate mitotic genes. These findings link a development gene to the control of cell cycle progression and suggest that high MEIS2 expression is a molecular mechanism for high expression of mitotic genes that is commonly observed in cancers of poor prognosis.
MEIS2 is essential for neuroblastoma cell survival and proliferation by transcriptional control of M-phase progression.
Cell line, Treatment
View SamplesAbnormal NF-kB2 activation has been reported in several types of human leukemia and lymphomas although the exact mechanisms and affected pathways are not clear. We have investigated these questions through the use of a unique transgenic mouse model with lymphocyte-targeted expression of p80HT, a lymphoma associated NF-kB2 mutant. Microarray analysis, verified at the RNA and protein level identified new downstream targets and confirmed established regulatory networks. 201 genes were significantly changed, with 126 being upregulated and 75 downregulated. Pathway analysis uncovered both known and unknown interactions between factors important in the development of human B cell lymphomas and multiple myeloma, including cyclins D1 and D2, TRAF1, CD27, BIRC5/survivin, IL-15 and IL-10. Critical roles for STAT3 and TNF receptors are highlighted. Six target genes of STAT3 were identified: cyclins D1and D2, IL-10, survivin, IL-21 and Blimp1. Interfering with STAT3 signaling induced apoptosis in multiple myeloma cell lines. Novel pathways for NF-kB2 are proposed that involve IL-10 and other genes in the differentiation of plasma cells, evasion of apoptosis and proliferation. These pathways were verified with publically available human microarrays. Several treatment strategies based on these findings are discussed.
NF-κB2 mutation targets survival, proliferation and differentiation pathways in the pathogenesis of plasma cell tumors.
Specimen part
View SamplesIncreased activation of the serine-glycine biosynthetic pathway is an integral part of cancer metabolism that drives macromolecule synthesis needed for cell proliferation. Whether this pathway is under epigenetic control is unknown. Here we show that the histone H3 lysine 9 (H3K9) methyltransferase G9A is required for maintaining the pathway enzyme genes in an active state marked by H3K9 monomethylation and for the transcriptional activation of this pathway in response to serine deprivation. G9A inactivation depletes serine and its downstream metabolites, triggering cell death with autophagy in cancer cell lines of different tissue origins. Higher G9A expression, which is observed in various cancers and is associated with greater mortality in cancer patients, increases serine production and enhances the proliferation and tumorigenicity of cancer cells. These findings identify a G9A-dependent epigenetic program in the control of cancer metabolism, providing a rationale for G9A inhibition as a therapeutic strategy for cancer.
The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation.
Treatment
View SamplesHigh temporal resolution RNAseq timecourse of mouse ES differentiation Investigations of transcriptional responses during developmental transitions typically use time courses with intervals that are not commensurate with the timescales of known biological processes. Moreover, such experiments typically focus on protein-coding transcripts, ignoring the important impact of long noncoding RNAs. We evaluated coding and noncoding expression dynamics at unprecedented temporal resolution (6-hourly) in differentiating mouse embryonic stem cells and report the effects of increased temporal resolution on the characterization of the underlying molecular processes. Overall design: Biological duplicate 120 hours of undirected mouse ES cell differentiation sampled 6 hourly Biological duplicate, low passage number (P18) W9.5 ESCs were cultured and differentiated as described previously [PMID:18562676; 17286599]. Cultures were harvested every six hours from the induction of differentiation to 120 hours post differentiation induction. Total RNA from cultures was purified using Trizol (Life Technologies) and DNase treatment was performed by RQ1 DNase (Promega) according to the manufacturer’s instructions. RNA integrity was measured on a Bioanalyzer RNA Nano chip (Agilent). RNA-Seq library preparation and sequencing of Poly-A-NGS libraries generated from 500 ng total RNA using SureSelect Strand Specific RNA Library Preparation Kit (Agilent) according to the manufacturer’s instructions. Paired-end libraries were sequenced to the first 100 bp on a HiSeq 2500 (Illumina) on High Output Mode. Library sequencing quality was determined using FastQC (Babraham Bioinformatics) and FastQ Screen (Babraham Bioinformatics). Illumina adaptor sequence and low quality read trimming (read pair removed if < 20 base pairs) was performed using Trim Galore! (Babraham Bioinformatics: www.bioinformatics.babraham.ac.uk/). Tophat2 [PMID:23618408] was used to align reads to the December 2011 release of the mouse reference genome (mm10) as outlined by Anders et al.[PMID:23975260]. Read counts data corresponding to GENCODE vM2 transcript annotations were generated using HTSeq[PMID:25260700]. All analyses were performed in the R Statistical Environment [PMID:18000755]. Briefly, counts data were background corrected and normalized for library size using edgeR [PMID:19910308], then transformed using voom[PMID:24485249] for differential expression analysis using LIMMA[PMID: 16646809].
High resolution temporal transcriptomics of mouse embryoid body development reveals complex expression dynamics of coding and noncoding loci.
Specimen part, Cell line, Subject, Time
View SamplesThis SuperSeries is composed of the SubSeries listed below.
HOXC9 directly regulates distinct sets of genes to coordinate diverse cellular processes during neuronal differentiation.
Specimen part, Cell line
View SamplesCell differentiation is an essential process of normal development by which a stem cell or progenitor cell becomes a post-mitotic, specialized cell with unique morphology and function. Also, it has long been recognized that differentiation is associated with a marked reduction in DNA damage response at the global level. The molecular basis for the coordination between cell cycle exit, acquirement of specialized structure and function, and attenuation of DNA damage response during differentiation is not well understood. We have conducted a genome-wide analysis of the HOXC9-induced neuronal differentiation program in human neuroblastoma cells. Gene expression profiling reveals that HOXC9-induced differentiation is associated with transcriptional regulation of 2,395 genes, which is characterized by global upregulation of neuronal genes and downregulation of cell cycle and DNA repair genes. Remarkably, genome-wide mapping demonstrates that HOXC9 occupies 40% of these genes, including a large number of genes involved in neuronal differentiation, cell cycle progression and DNA damage response. These findings suggest that HOXC9 directly activates and represses the transcription of distinct sets of genes to coordinate the cellular events characteristic of neuronal differentiation.
HOXC9 directly regulates distinct sets of genes to coordinate diverse cellular processes during neuronal differentiation.
Cell line
View Samples