Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the mechanism, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analysed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 versus 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish. In this cluster, genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Since growth was enhanced similarly in both wild-type fish and mutants, these processes may play an important role in exercise-enhanced growth. Overall design: Deep-sequencing transcriptome analysis of white muscle samples derived from wild-type (++) or glucocorticoid receptor (Gr) mutant (--) Danio rerio specimens that were exposed to either a resting (REST) or a swimming (UOPT) regimen: wild-type resting (REST++; n=3), Gr mutant resting (REST--; n=3), wild-type swimming (UOPT++; n=3), Gr mutant swimming (UOPT--; n=3).
Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (<i>Danio rerio</i>).
Specimen part, Treatment, Subject
View SamplesAdenoid cystic carcinoma (ACC) is one of the most common malignancies that arise in the salivary glands, with an incidence of 4.5 per 1,000,000. It can also arise in glandular tissue closely related to salivary glands in the lacrimal gland, nasal passages and tracheobronchial tree, as well as in glands of the breast and vulva. At all of these sites, it is characterized by a distinctive histology of basaloid epithelial cells arranged in cribriform or tubular patterns, usually demonstrating abundant hyaline extracellular matrix secretion and some degree of myoepithelial differentiation. ACC is generally a slow-growing tumor characterized by a protracted clinical course, usually well over 5 years in duration, marked by regional recurrence, distant metastasis and/or spread along peripheral nerves. A recurrent chromosomal translocation, t(6;9)(q23;p21), has been identified in ACC, and recently it has been discovered that in a majority of ACC the MYB gene on chromosome 6 is fused to the 3 terminus of the NFIB gene on chromosome 9, creating a fusion gene product resulting in increased MYB-related transcriptional activation. Recently it has been determined that most cell lines with attribution of ACC derivation are either contaminants of other cell lines or do not have the characteristic MYB-NFIB translocation. Also, there are no animal models of this histologically and genetically defined tumor type. To address the paucity of experimental and pre-clinical models systems of ACC, we have for several years been establishing xenograft tumor lines from clinical samples of ACC. We describe our experience with these models and their characterization here.
Development and characterization of xenograft model systems for adenoid cystic carcinoma.
Specimen part
View SamplesWe found the PRC2 component EZH2 to be upregulated by the pathognomonic fusion oncogene EWS-FLI1 in Ewing tumors and mesenchymal stem cells (Richter GH et al., Proc Natl Acad Sci U S A. 2009;106:5324-9). Downregulation of EZH2 by RNA interference in Ewing tumor cell lines suppressed oncogenic transformation in vitro and in vivo. These data suggest that EZH2 might play a central role in Ewing Tumor pathology.
Epigenetic maintenance of stemness and malignancy in peripheral neuroectodermal tumors by EZH2.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Gene Expression Profiling of Ewing Sarcoma Tumors Reveals the Prognostic Importance of Tumor-Stromal Interactions: A Report from the Children's Oncology Group.
Sex, Age, Disease
View SamplesFor the current study we performed whole genome expression profiling on two independent cohorts of clinically annotated, localized Ewing sarcoma (ES) tumors in an effort to identify and validate prognostic gene signatures. ES specimens were obtained from the Childrens Oncology Group (COG) and whole genome expression profiling performed using Affymetrix Human Exon 1.0 ST arrays. Lists of differentially expressed genes between survivors and non-survivors were used to identify prognostic gene signatures
Gene Expression Profiling of Ewing Sarcoma Tumors Reveals the Prognostic Importance of Tumor-Stromal Interactions: A Report from the Children's Oncology Group.
Sex, Disease
View SamplesFor the current study we performed whole genome expression profiling on two independent cohorts of clinically annotated, localized Ewing sarcoma (ES) tumors in an effort to identify and validate prognostic gene signatures. ES specimens were obtained from the Childrens Oncology Group (COG) and whole genome expression profiling performed using Affymetrix Human Exon 1.0 ST arrays. Lists of differentially expressed genes between survivors and non-survivors were used to identify prognostic gene signatures
Gene Expression Profiling of Ewing Sarcoma Tumors Reveals the Prognostic Importance of Tumor-Stromal Interactions: A Report from the Children's Oncology Group.
Sex, Age, Disease
View SamplesHost-microbe associations underlie many key processes of host development, immunity, and life history. Yet, none of the current research on the central model species Caenorhabditis elegans considers the worm's natural microbiome. Instead, almost all laboratories exclusively use the canonical strain N2 and derived mutants, maintained through routine bleach sterilization in monoxenic cultures with an E. coli strain as food. Here, we characterize for the first time the native microbiome of C. elegans and assess its influence on nematode life history characteristics via transcriptomics. Overall design: mRNA profiles of wild type (WT) C.elegans fed to either Ochrobactrum strain MYb65, MYb71, mixture of MYb65 and MYb71 or standard lab food E. coli OP50 at different life stages (from L2 to adults) were generated by deep sequencing, in triplicate, using Illumina HiSeq2000.
The Inducible Response of the Nematode <i>Caenorhabditis elegans</i> to Members of Its Natural Microbiota Across Development and Adult Life.
Cell line, Treatment, Subject, Time
View SamplesThe synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based upon proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncogene with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate EWS-FLI1 upon post-transcriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis including CLK1, CASP3, PPFIBP1, and TERT validate as alternatively spliced by EWS-FLI1. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNPK, and PRPF6. Reduction of EWS-FLI1 produces an isoform of g-TERT that has increased telomerase activity compared to WT TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions including DDX5 and RNA helicase A (RHA) that alters RNA splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1 showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells. Exon array analysis of 75 ES patient samples show similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing towards oncogenesis, and reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.
Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing.
Specimen part, Cell line
View SamplesGliomas have been proposed to be driven by a population of neural stem-like cells. We isolated a panel of novel human glioma cell lines using adherent neural stem cell conditions.
Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens.
Specimen part
View SamplesThis study aimed to explore the role of the Zyxin-related protein TRIP6 (thyroid receptor interacting protein 6) in Ewing's sarcoma (ES). By interrogation of published miccroarray data, we observed that of all seven Zyxin-proteins only TRIP6 is highly overexpressed in ES compared to normal tissues. RNA interference experiments and subsequent microarray and gene-set enrichment analyses indicated that TRIP6 expression is associated wth a pro-proliferative and pro-invasive transcriptional signature. Consistently, functional assays demonstrated that TRIP6 promotes migration, invasion, long-term proliferation and clonogencity of ES cells.
The Zyxin-related protein thyroid receptor interacting protein 6 (TRIP6) is overexpressed in Ewing's sarcoma and promotes migration, invasion and cell growth.
Specimen part, Cell line, Treatment
View Samples