Molecular pathways activated in MALT lymphoma are not well defined.
Gene expression profiling of pulmonary mucosa-associated lymphoid tissue lymphoma identifies new biologic insights with potential diagnostic and therapeutic applications.
Sex
View Sampleswe report the comperative transcriptome analysis of the MMTV-TGF- a female mice thymus tissues Overall design: 3 different fed types
Transcriptome Analysis of the Thymus in Short-Term Calorie-Restricted Mice Using RNA-seq.
Specimen part, Cell line, Subject
View SamplesSplenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrative transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P <0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL.
An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma.
Specimen part, Disease
View SamplesSplenic marginal zone lymphoma (SMZL) is an indolent B-cell lymphoproliferative disorder characterised by 7q32 deletion, but the target genes of this deletion remain unknown. In order to elucidate the genetic target of this deletion, we performed an integrative analysis of the genetic, epigenetic, transcriptomic and miRNomic data. High resolution array comparative genomic hybridization of 56 cases of SMZL delineated a minimally deleted region (2.8Mb) at 7q32, but showed no evidence of any cryptic homozygous deletion or recurrent breakpoint in this region. Integrative transcriptomic analysis confirmed significant under-expression of a number of genes in this region in cases of SMZL with deletion, several of which showed hypermethylation. In addition, a cluster of 8 miRNA in this region showed under-expression in cases with the deletion, and three (miR-182/96/183) were also significantly under-expressed (P <0.05) in SMZL relative to other lymphomas. Genomic sequencing of these miRNA and IRF5, a strong candidate gene, did not show any evidence of somatic mutation in SMZL.
An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma.
No sample metadata fields
View SamplesThe five DLBCL cell lines were treated with R406 to assess the signature of SYK inhibition. In previous studies, R406 decreased the proliferation and induced apoptosis of these surface Ig+ cell lines. In the previous studies, R406 inhibited the autophosphorylation of SYK 525/526 and SYK-dependent phosphorylation of BCR signaling components such as BLNK.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas.
Specimen part, Cell line, Treatment, Time
View SamplesThe two DLBCL cell lines were treated with R406 to assess the signature of SYK inhibition. In previous studies, R406 decreased the proliferation and induced apoptosis of these surface Ig+ cell lines. In the previous studies, R406 inhibited the autophosphorylation of SYK 525/526 and SYK-dependent phosphorylation of BCR signaling components such as BLNK.
SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas.
Specimen part, Cell line, Treatment
View SamplesBACKGROUND. Poorly-differentiated (PDTC) and anaplastic (ATC) thyroid cancers are rare and frequently lethal tumors, which so far have not been subjected to comprehensive genetic characterization. METHODS. We performed next generation sequencing of 341 cancer genes in 117 PDTCs and ATCs, and a transcriptomic analysis of a representative subset of 37 tumors. Results were analyzed in the context of The Cancer Genome Atlas (TCGA) study of papillary thyroid cancers (PTC). RESULTS. ATCs have a greater mutation burden than PDTCs, and higher mutation frequency of TP53, TERT promoter, PI3K/AKT/mTOR pathway effectors, SWI/SNF subunits and histone methyltransferases. BRAF and RAS are the predominant drivers, and dictate remarkably distinct tropism for nodal vs. distant metastases in PDTC. RAS and BRAF sharply distinguish between PDTCs defined by the Turin (PDTC-Turin) vs. MSKCC (PDTC-MSK) criteria, respectively. Mutations of EIF1AX, a component of the translational preinitiation complex, are markedly enriched in PDTCs and ATCs, and have a striking pattern of co-occurrence with RAS. TERT promoter mutations are rare and subclonal in PTCs, whereas they are clonal and highly prevalent in advanced cancers. Application of the TCGA-derived BRAF-RAS score (a measure of MAPK transcriptional output) shows a preserved relationship with BRAF/RAS mutation in PDTCs, whereas ATCs are BRAF-like irrespective of driver mutation. CONCLUSIONS. These data support a model of tumorigenesis whereby PDTCs and ATCs arise from well-differentiated tumors through the accumulation of key additional genetic abnormalities, many of which have prognostic and possible therapeutic relevance. The widespread genomic disruptions in ATC compared to PDTC underscore their greater virulence and higher mortality.
Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers.
Sex, Specimen part
View SamplesGene expression data from CD22+B220+ FACS-purified splenocytes of adult Sca1-HGAL knock-in CBAxC57BL/6J mice or wild-type littermates.
Germinal centre protein HGAL promotes lymphoid hyperplasia and amyloidosis via BCR-mediated Syk activation.
Specimen part
View SamplesWaldenstrms macroglobulinemia (WM) is a distinct clinicobiological entity defined as a B-cell neoplasm characterized by a lymphoplasmacytic infiltrate in the bone marrow and immunoglobulin M paraprotein production. Cytogenetic analysis is limited by the difficulty in obtaining tumor metaphases and the genetic basis of the disease remains poorly defined. We performed a comprehensive analysis in 42 WM patients by using high-resolution array-based comparative genomic hybridization with the Human Genome 244A microarray. Overall, 83% of samples have chromosomal abnormalities, with a median of three abnormalities per patient (range 0 to 27). The most common abnormality was 6q deletion (40%) and four non-overlapped minimal deleted regions (MDR) were identified. Gain of 6p was the second most common abnormality (17%) and its presence was always concomitant with 6q loss. An interstitial MDR was delineated at 13q14 including MIRN15A and MIRN16-1 in 10% of patients. Other recurrent deletions were 7q22, 8p, 11q22-q23, 11q23-q24 and 17p11-p13 (7% each). Copy gains were identified in chromosomes 18 (17%), 4 (12%), 3 (10%), 8q (10%) and Xq27.1-q28 (10%). To note, we reported biallelic deletions and/or inactivating mutations with uniparental disomy in TRAF3 and TNFAIP3, two negative regulators of the NF-kB signaling pathway. Furthermore, we confirmed the association between TRAF3 inactivation and increased transcriptional activity of NF-kB target genes. Mutational activation of the NF-kB pathway, which is normally activated by ligand-receptor interactions within the bone marrow microenvironment, highlight its biologic importance, and suggest a therapeutic role for inhibitors of NF-KB pathway activation in the treatment of Waldenstrms macroglobulinemia.
Identification of copy number abnormalities and inactivating mutations in two negative regulators of nuclear factor-kappaB signaling pathways in Waldenstrom's macroglobulinemia.
Sex, Age, Specimen part
View SamplesMalignant gliomas constitute one of the most significant areas of unmet medical need, due to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking. Here we integrate transcriptomic and epigenomic analyses to define Polycomb-dependent networks that promote gliomagenesis, validating them both in two independent mouse models and in a large cohort of human samples. We found that Polycomb dysregulation in gliomagenesis affects transcriptional networks associated to invasiveness and de-differentiation. The dissection of these networks uncovers Zfp423 as a crtitical Polycomb-dependent transcription factor whose silencing negatively impacts survival. The anti-gliomagenic activity of Zfp423 requires interaction with the SMAD proteins within the BMP signaling pathway, pointing to a novel synergic circuit through which Polycomb inhibits BMP signaling. Overall design: Transcriptomic analysis of two different stages of gliomagenesis
Polycomb dysregulation in gliomagenesis targets a Zfp423-dependent differentiation network.
Specimen part, Cell line, Subject
View Samples