refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 411 results
Sort by

Filters

Technology

Platform

accession-icon GSE3075
Transplantation of ALDHhiSSClo Neural Stem Cells in nmd Mice, an Animal Model of SMARD1
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

SMARD1 is an infantile autosomal recessive motor neuron (MN) disease, caused by mutations in the Immunoglobulin mu binding protein 2 (IGHMBP2).

Publication Title

Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE27207
Gene Expression Analysis of native and disease-corrected motor neurons from human spinal muscular atrophy induced pluripotent stem cells free of vector and transgenic sequences
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27206
Global gene expression profiles of iPSC from SMA patient, unaffected father and iPS 19.9 compared to transcriptomic data obtained by corresponding fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Motoneurons derived from induced pluripotent stem cells (iPS cells) obtained by reprogramming SMA patient and his healthy father fibroblasts, and genetically corrected SMA-iPSC obtained converting SMN2 into SMN1 with target gene correction (TGC), were used to study gene expression and splicing events linked to pathogenetic mechanisms.

Publication Title

Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10224
Gene Expression Analysis of laser-microdissected motorneurons in Spinal Muscular Atrophy (SMA)
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Spinal Muscular Atrophy (SMA) is an autosomal recessive motor neuron disease and is the second most common genetic disorder leading to death in childhood. Stem cell transplantation could represent a therapeutic approach for motor neuron diseases such as SMA. We examined the theraputics effects of a spinal cord neural stem cell population and their ability to modify SMA phenotype.

Publication Title

Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP021459
Detection of small RNAs generated during early infection of human HEK 293 cells by the alphavirus Sindbis virus
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

A time course of infection of the alphavirus Sindbis virus (SINV) was used to investigate the presence of viral specific vsRNA and the changes in miRNAs profiles in human embryonic kidney 293 cells (HEK293) by high throughput DNA sequencing. Deep sequencing of small RNAs early in SINV infection (4 and 6 hpi) showed low abundance (0.8%) of viral specific RNAs (vsRNAs) , with a random uniform distribution not typical of Dicer products, suggesting they arise from non-specific degradation. Sequencing showed little variation of cellular microRNAs (miRNAs) at 4 and 6 hpi compared to uninfected cells. Twelve miRNAs exhibiting some minor differential expression by sequencing, showed insignificant modulation by Northern blot analysis. Overall design: RNA was isolated from mock infected and SINV inoculated HEK 293 cells at 4hpi and 6hpi cDNA libraries were generated for the small RNA (sRNA) content of the cells and sequenced using Illumina GA II, which yielded between 29.1M and 30.5M reads per sample

Publication Title

Small RNA analysis in Sindbis virus infected human HEK293 cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP017138
RECURRENT SETBP1 MUTATIONS IN ATYPICAL CHRONIC MYELOID LEUKEMIA
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

RNA-Seq analysis of atypical chronic myeloid leukemia samples Overall design: We sequenced leukemic mRNA from 13 Atypical Cronic Mieloid Leukemia (aCML) samples by Illumina GAIIx. Transcriptomic profiles, differentially expressed genes and pathway enrichment analysis were obtained comparing 7 SETBP1-mutated samples and 6 non-mutated (WT) samples by using TopHat aligner and SAMMate gene expression quantifier. We focused on the gene expression profile of known coding transcripts. A dataset of 20,907 protein-coding Ensembl Genes was obtained from the RNA-Seq by using the Human Ensembl GTF annotation file vs54 dowloaded from ftp://ftp.ensembl.org/pub/release-54/gtf/homo_sapiens/.

Publication Title

Recurrent SETBP1 mutations in atypical chronic myeloid leukemia.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP109109
Epidermal Wnt signaling regulates transcriptome heterogeneity and proliferative fate in neighboring cells
  • organism-icon Mus musculus
  • sample-icon 278 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

We performed single-cell mRNA-Seq on wild-type mouse keratinocytes co-cultured with keratinocytes in which beta-catenin was activated. We identified seven distinct cell states in cultures that had not been exposed to the beta-catenin stimulus. Using temporal single-cell analysis we reconstruct the cell fate changes induced by neighbor Wnt activation. Gene expression heterogeneity was reduced in neighboring cells and this effect was most dramatic for protein synthesis associated genes. The changes in gene expression were accompanied by a shift from a quiescent to a more proliferative stem cell state. By integrating imaging and reconstructed sequential gene expression changes during the state transition we identified transcription factors, including Smad4 and Bcl3, that were responsible for effecting the transition in a contact-dependent manner. Our data indicate that non cell autonomous Wnt/beta-catenin signaling decreases transcriptional heterogeneity and further our understanding of how epidermal Wnt signaling orchestrates regeneration and self-renewal. Overall design: Comparison of cells exposed to Wnt activated neighbors versus unactivated.

Publication Title

Epidermal Wnt signalling regulates transcriptome heterogeneity and proliferative fate in neighbouring cells.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE19355
Silencing of mrhl non coding RNA in mouse spermatoginial cells GC1-Spg
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mrhl is a non coding RNA identified from mouse chromosome 8. It is a 2.4kb poly adenylated, nuclear restricted RNA expressed in multiple tissues. The 2.4 kb RNA also undergoes a nuclear processing event mediated through Drosha that generates an 80nt intermediate RNA. This study was aimed at understanding the functiion of mrhl by silencing the mrhl RNA in the mouse spermatogonial cells using a pool of siRNAs targeted against the mrhl and analyse the global gene expression change using Affymetrix mouse expression array. The mRNAs that showed significant change in expression in mrhl siRNA treated cells against control were studied further for their biological significance with respect to mrhl silencing.

Publication Title

mrhl RNA, a long noncoding RNA, negatively regulates Wnt signaling through its protein partner Ddx5/p68 in mouse spermatogonial cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP060567
Mechano-sensitive Gene Expression with RNA-Seq: Revisiting the Osteocytic Cell Response to Fluid Flow
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Bone adaptation to mechanical loading is regulated via signal transduction by mechano-sensing osteocytes. Mineral-embedded osteocytes experience strain-induced interstitial fluid flow and fluid shear stress, and broad shifts in gene expression are key components in the signaling pathways that regulate bone turnover. RNA sequencing analysis, or RNA-Seq, enables more complete characterization of mechano-sensitive transcriptome regulation than previously possible. We hypothesized that RNA-Seq of osteocytic MLO-Y4 cells reveals both expected and novel gene transcript regulation in cells previously fluid flowed and analyzed using gene microarrays (Govey et al., J Biomech, 2014). MLO-Y4 cells were flowed for 2 h with 1 Pa oscillating fluid shear stress and post-incubated 2 h. RNA-Seq of original samples detected 58 fluid flow-regulated gene transcripts (p-corrected<0.05) versus 65 transcripts detected by microarray. However, RNA-Seq demonstrated greater dynamic range, with all 58 transcripts >1.5 fold-change whereas 10 of 65 met this cut-off by microarray. Analyses were complimentary in patterns of regulation, though only 6 transcripts were significant in both analyses: Cxcl5, Cxcl1, Zc3h12a, Ereg, Slc2a1, and Egln1. As part of a broad inflammatory response inferred by gene ontology analyses, we again observed greatest up-regulation of inflammatory C-X-C motif chemokines, and newly implicated HIF-1? and AMPK signaling pathways. Importantly, we detected both expected mechano-sensitive transcripts (e.g. Nos2, Ptgs2, Ccl7) and transcripts not previously identified as mechano-sensitive, e.g. Ccl2. We found RNA-Seq advantageous over microarrays because of its ability to analyze unbiased estimation of gene expression, informing our understanding of osteocyte signaling. Overall design: Osteocyte-like MLO-Y4 cells were subjected to 2 hours of 10 dyn/cm^2 oscillating fluid flow in parallel-plate fluid flow chambers and harvested for analysis after an additional 2 hours post-flow incubation in fresh medium. Parallel control samples from sham treated cells were also collected. Triplicate samples of both flow and non-flow control conditions were collected to analyze flow vs. non-flow gene transcript regulation.

Publication Title

Functional and structural characterization of osteocytic MLO-Y4 cell proteins encoded by genes differentially expressed in response to mechanical signals in vitro.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP077671
Myc and YAP roles in the control of the cell cycle [3T9 RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNAseq analysis of YAP and Myc induced in quiescent and confluent 3T9 fibroblasts Overall design: RNAseq analysis of YAP and Myc induced in quiescent and confluent 3T9 fibroblasts

Publication Title

Transcriptional integration of mitogenic and mechanical signals by Myc and YAP.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact