refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 175 results
Sort by

Filters

Technology

Platform

accession-icon GSE9444
Sleep deprivation and the brain
  • organism-icon Mus musculus
  • sample-icon 131 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9442
Molecular correlates of sleep deprivation in the brain of three inbred mouse strains in an around-the-clock experiment
  • organism-icon Mus musculus
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

These studies adress differential changes in gene expression between sleep deprived and control mice. We profiled gene expression at four time points across the 24H Light/Dark cycle to take into account circadian influences and used three different inbred strains to understand the influence of genetic background.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9441
The effect of sleep deprivation on gene expression in the brain and the liver of three inbred mouse strains
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

These studies adress differential changes in gene expression between 6h sleep deprived and control mice in the brain and the liver. We profiled gene expression in three different inbred strains to understand the influence of genetic background.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9443
Gene expression in brain Homer1a-expressing cells after sleep deprivation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To gain insight into the molecular changes of sleep need, this study addresses gene expression changes in a subpopulation of neurons selectively activated by sleep deprivation. Whole brain expression analyses after 6h sleep deprivation clearly indicate that Homer1a is the best index of sleep need, consistently in all mouse strains analyzed. Transgenic mice expressing a FLAG-tagged poly(A)-binding protein (PABP) under the control of Homer1a promoter were generated. Because PABP binds the poly(A) tails of mRNA, affinity purification of FLAG-tagged PABP proteins from whole brain lysates, is expected to co-precipitate all mRNAs from neurons expressing Homer1a. Three other activity-induced genes (Ptgs2, Jph3, and Nptx2) were identified by this technique to be over-expressed after sleep loss. All four genes play a role in recovery from glutamate-induced neuronal hyperactivity. The consistent activation of Homer1a suggests a role for sleep in intracellular calcium homeostasis for protecting and recovering from the neuronal activation imposed by wakefulness.

Publication Title

Homer1a is a core brain molecular correlate of sleep loss.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47681
trkB.T1 WT versus trkB.T1 KO expression data following spinal cord injury (SCI)
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We profiled spinal cord tissue at the site of a moderate contusion injury at the level of the thoracic spinal cord

Publication Title

TrkB.T1 contributes to neuropathic pain after spinal cord injury through regulation of cell cycle pathways.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon SRP131067
Roles of the Brca2 and Wapl complexes with Pds5 in sister chromatid cohesion, cohesin localization, and gene expression [RNA-seq]
  • organism-icon Drosophila melanogaster
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

RNA expression was measured by RNA-seq in Drosophila ML-DmBG3-c2 cells depleted for proteins involved in sister chromatid cohesion, and in developing third instar wing discs with or withough brca2 gene mutations Overall design: RNA expression in depleted cells was compared to mock treated cells and RNA expression in wing discs from brca2 mutant Drosophila was compared to expression in wing discs without brca2 mutations This series includes mock RNAi treated samples re-used from GSE100547.

Publication Title

Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE17617
Gene profiling within the orexin-producing neurons
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Narcolepsy is a sleep disorder characterized by excessive daytime sleepiness and attacks of muscle atonia triggered by strong emotions (cataplexy). The best biological marker of narcolepsy is orexin deficiency with dramatic loss in hypothalamic orexin-producing neurons. Together with a tight HLA and T-cell receptor alpha(5) association, narcolepsy is believed to be autoimmune although all attempts to prove it have failed.To characterize orexin specific peptides we produced a transgenic mouse model to access to the orexin neurons transcription profile. We generated BAC-based transgenic mice by replacing the orexin coding sequence by a flag-tagged poly(A) binding protein (Pabp1) cDNA sequence. The basis of this construct is to take advantage of the ability of Pabp1 to bind to the poly(A) tails of mRNAs in vivo. Thus mRNAs from orexin cells are expected to be enriched by cross-linking them to the flag-tagged PABP and then co-immunoprecipitating this complex with a specific anti-flag monoclonal antibody.

Publication Title

Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients.

Sample Metadata Fields

Age

View Samples
accession-icon GSE21834
Identification of the receptor tyrosine kinase AXL in triple negative breast cancer as a novel target for the human miR-34a microRNA
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the receptor tyrosine kinase AXL in breast cancer as a target for the human miR-34a microRNA.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE64920
Caspase-2-dependent tumor suppression does not depend on the scaffold protein Raidd
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (Raidd) functions as a dual adaptor protein due to its bipartite nature, and is therefore thought to be a constituent of different multiprotein complexes including the PIDDosome, where it connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (Pidd1). As such, Raidd has been implicated in DNA-damage-induced apoptosis as well as in tumor suppression, the latter based on its role as a direct activator of Caspase-2, known to delay lymphomagenesis caused by overexpression of c-Myc or loss of ATM kinase. As loss of Caspase-2 leads to an acceleration of tumor onset in the E-Myc mouse model we set out to interrogate the role of Raidd in this process in more detail. Our data obtained analyzing E-Myc/Raidd-/- mice indicate that Raidd is unable to protect from c-MYC-driven lymphomagenesis. Similarly, we failed to observe an effect of Raidd-deficiency on thymic lymphomagenesis induced by y-irradiation or fibrosarcoma development driven by 3-methylcholanthrene. The role of Caspase-2 as a tumor suppressor can therefore be uncoupled from its ability to interact and auto-activate upon binding to Raidd. Further, we provide supportive evidence that the tumor suppressive role of Caspase-2 is related to maintaining genomic integrity and allowing efficient p53-mediated signaling. Overall, our findings suggest that Raidd, although described to be the key-adapter allowing activation of the tumor suppressor Caspase-2, fails to suppress tumorigenesis in vivo.

Publication Title

The tumor-modulatory effects of Caspase-2 and Pidd1 do not require the scaffold protein Raidd.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP110597
Polycomb Repressive Complex 1 regulates transcription of active genes [RNAseq]
  • organism-icon Drosophila melanogaster
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

RNA expression was measured using RNA-seq Overall design: RNA levels in Mock-treated control Drosophila cells were compared to RNA levels in cells RNAi depleted for Ph, Sce, and Pc

Publication Title

Polycomb repressive complex 1 modifies transcription of active genes.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact