Rift Valley Fever Virus (RVFV), a negative-stranded RNA virus, is the etiological agent of the vector-borne zoonotic disease, Rift Valley Fever (RVF). In both humans and livestock, protective immunity can be achieved through vaccination. Earlier and more recent vaccine trials in cattle and sheep demonstrated a strong neutralizing antibody and total IgG response induced by the RVFV vaccine, MP-12. From previous work, protective immunity in sheep and cattle vaccinates normally occurs from 7 to 21 days after inoculation with MP-12. While the serology and protective response induced by MP-12 has been studied, little attention has been paid to the underlying molecular and genetic events occurring prior to the serologic immune response. To address this, we isolated RNA from whole blood from vaccinates over a time course of 21 days before and after inoculation during a recent vaccine trial with MP-12. This RNA time course was deeply sequenced by RNASeq and bioinformatically analyzed. Our results revealed time-dependent activation or repression of numerous gene ontologies and pathways related to immune response and regulation. Additional analyses identified a correlative relationship between specific genes related to immune activity and protective immunity prior to serologic detection of antibody response. These data provide an important proof of concept for identifying molecular and genetic components underlying the immune response to vaccination and protection prior to serologic detection. Overall design: Experimental Animals: Healthy, 4 – 6 month old Bos taurus heifer and steer calves were used in the present study. The calves were seronegative to both bovine viral diarrhea and bovine leukemia virus by antigen capture enzyme-linked immunosorbent assay (ELISA) analyses done at the Texas Veterinary Medical Diagnostic Laboratory, College Station, Texas and had no detectable neutralizing antibodies to RVFV by PRNT80 at the time of vaccination. The animal experiments were performed under an Institutional Animal Care and Use Committee approved protocol #2010-192. Vaccines: The authentic recombinant MP-12 (MP12) is an attenuated RVFV vaccine prepared for use in humans by the U. S. Army Medical Research Institute of Infectious Diseases. Vaccines were propagated and prepared at University of Texas Medical Branch in Galveston, TX. Experimental Design: The calves were housed in an ABSL2 Ag biocontainment facility where they were randomized into test groups and acclimated to the facility for 14 days. Animals were inoculated either subcutaneously (s.c.) or intramuscularly (i.m.) with 1x105 PFU of MP-12 (3 animals in each group). Whole blood was collected prior to inoculation on Days 0 through 7, 10, 14, 21 and preserved for serum neutralization studies (PRNT) or total RNA purification for RNASeq analysis. Experimentally determined PRNT values were used to determine the “serologic response status” for animals “unvaccinated”, “vaccinated, not protected”, or “vaccinated, protected” with animals having a serum dilution ration of >1:80 being considered protected. Only RNA samples that met the minimum quality and quantity thresholds were used for the sequencing analysis. Rectal temperatures were recorded each time blood was collected and their health status was documented daily. At the end of the respective studies, the calves were euthanized with pentobarbital sodium (120 mg/kg i.v.). All calves were healthy and clinically normal at the termination of the respective studies. Morrill, John C., Richard C. Laughlin, Nandadeva Lokugamage, Jing Wu, Roberta Pugh, Pooja Kanani, L. Garry Adams, Shinji Makino, C. J. Peters. Immunogenicity of a Recombinant Rift Valley Fever MP-12 Vaccine Candidate in Calves. Vaccine. 2013. doi:10.1016/j.vaccine.2013.08.003. 238. Morrill, John C., Richard C. Laughlin, Nandadeva Lokugamage, Roberta Pugh, Elena Sbrana, William J. Weise, L. Garry Adams, Shinji Makino and C. J. Peters.. Safety and Immunogenicity of Recombinant Rift Valley Fever MP-12 Vaccine Candidates in Sheep. Vaccine 10.1016/j.vaccine.2012.10.118, 2012.
Correlative Gene Expression to Protective Seroconversion in Rift Valley Fever Vaccinates.
Specimen part, Subject, Time
View SamplesWe characterize the gene expression changes which occur in the mouse glomerular podocyte, mesangial, and endothelial cells between control mice and mutant mice which are missing two copies of Fyn-proto oncogene (Fyn) and one copy of CD2-associated protein (CD2AP) in a mouse model of FSGS. Overall design: The glomeruli are purified by digestion with Collagenase A and sieving, a single cell suspension is generated via enzymatic dissociation; the single cell suspension is then FACS sorted based on GFP-fluorescence (targeting the glomerular endothelial, mesangial, and podocyte cells). Total RNA was purified using a column-based system. RNA was then quantitatively and qualitatively analyzed using an agilent bioanalynzer, cDNA libraries were generated using Nugen Ovation RNA-Seq V2, and the resulting libraries were ran on an Illumina HiSeq 2500. Data was analyzed using Strand NGS version 2.6.
A bigenic mouse model of FSGS reveals perturbed pathways in podocytes, mesangial cells and endothelial cells.
Specimen part, Subject
View SamplesThe Hox complex consists of 39 genes arranged in 4 clusters of flanking genes and 13 paralogous groups in mammals. To assess the functional redundancy of Hox abdominal-B genes during renal development, we used a modified recombineering strategy to simultaneous introduce frameshift mutations into the Hox9, Hox10, and Hox11 flanking genes of the HoxA, HoxC, and HoxD paralogous groups. We performed RNA seq on whole kidneys at E18.5 in triplicates for representative genotypes including: wild type; Hoxa9,10,11-/- HoxC9,10,11+/-, Hoxa9,10,11+/- HoxC9,10,11-/-, Hoxa9,10,11-/- HoxC9,10,11-/-. Our results suggest that the loss of Hox function results in a partial metanephric to mesonephric transformation, with tubules co-expressing markers of both proximal tubules and collecting ducts, as well as markers of mesonephric-derived epididymis tubules. Overall design: mRNA profiles were generated by performing RNA-seq on whole kidneys at E18.5 in triplicates for Hox mutant genotypes including: 1) wild type; 2) Hoxa9,10,11-/- HoxC9,10,11+/-, 3) Hoxa9,10,11+/- HoxC9,10,11-/-, and 4) Hoxa9,10,11-/- HoxC9,10,11-/- by deep sequencing using Illumina Hi-Seq 2500
Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney.
Specimen part, Cell line, Subject
View SamplesDC-SIGN is a C-type lectin expressed by dendritic cells (DCs) that binds HIV-1, sequestering it within multivesicular bodies to facilitate transmission to CD4+ T cells. Here we characterize the molecular basis of signalling through DC-SIGN by large-scale gene expression profiling and phosphoproteome analysis. Solitary DC-SIGN activation leads to a phenotypically disparate transcriptional program from Toll-like receptor (TLR) triggering with downregulation of MHC II, CD86, and interferon response genes and with induction of the TLR negative regulator ATF3. Phosphoproteome analysis reveals DC-SIGN signals through the leukemia-associated Rho guanine nucleotide exchange factor (LARG) to induce Rho activity. This LARG activation also occurs on DC HIV exposure and is required for effective HIV viral synapse formation. Taken together HIV mediated DC-SIGN signalling provides a mechanism by which HIV evades the immune response yet induces viral spread.
Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication.
No sample metadata fields
View SamplesMetastatic colonization involves cancer cell lodgment or adherence in the microvasculature and subsequent migration of those cells across the endothelium into a secondary organ site. To study this process further, we analyzed transendothelial migration of human PC-3 prostate cancer cells in vitro. We isolated a subpopulation of cells, TEM4-18, that crossed an endothelial barrier more efficiently, but surprisingly, were less invasive than parental PC-3 cells in other contexts in vitro. Importantly, TEM4-18 cells were more aggressive than PC-3 cells in a murine metastatic colonization model. Microarray and FACS analysis of these cells showed that the expression of many genes previously associated with leukocyte trafficking and cancer cell extravasation were either unchanged or down-regulated. TEM4-18 cells exhibited characteristic molecular markers of an epithelial-to-mesenchymal transition (EMT), including frank loss of E-cadherin expression and upregulation of the E-cadherin repressor ZEB1. Silencing ZEB1 in TEM4-18 cells resulted in increased E-cadherin and reduced transendothelial migration. TEM4-18 cells also express N-cadherin, which was found to be necessary, but not sufficient for increased transendothelial migration. Our results extend the role of EMT in metastasis to transendothelial migration and implicate ZEB1 and N-cadherin in this process in prostate cancer cells.
ZEB1 enhances transendothelial migration and represses the epithelial phenotype of prostate cancer cells.
No sample metadata fields
View SamplesMetabolic production of acetyl-CoA has been linked to histone acetylation and gene regulation, however the mechanisms are largely unknown. We show that the metabolic enzyme acetyl-CoA synthetase 2 (ACSS2) is a critical and direct regulator of histone acetylation in neurons and of long-term mammalian memory. We observe increased nuclear ACSS2 in differentiating neurons in vitro. Genome-wide, ACSS2 binding corresponds with increased histone acetylation and gene expression of key neuronal genes. These data indicate that ACSS2 functions as a chromatin-bound co-activator to increase local concentrations of acetyl-CoA and to locally promote histone acetylation for transcription of neuron-specific genes. Remarkably, in vivo attenuation of hippocampal ACSS2 expression in adult mice impairs long-term spatial memory, a cognitive process reliant on histone acetylation. ACSS2 reduction in hippocampus also leads to a defect in upregulation of key neuronal genes involved in memory. These results reveal a unique connection between cellular metabolism and neural plasticity, and establish a link between generation of acetyl-CoA and neuronal chromatin regulation. Overall design: Global survey of gene expression in CAD cells and differentiated CAD neurons following lentiviral knockdown of ACSS2 or ATP citrate lyase (ACL) (and control = scramble hairpin); survey of hippocampal gene expression changes associated with retrieval of fear memory, after ACSS2-AAV knockdown or in EGFP-AAV control (comparison of 0h vs. 1h post-memory retrieval).
Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory.
Specimen part, Cell line, Treatment, Subject, Time
View SamplesPURPOSE: To examine if a parental high fat diet (HFD) influences metabolic health in two generations of offspring, and alters the germ cell (GC) transcriptome. PROCEDURE: GC-eGFP Sprague Dawley rats were weaned onto HFD (45% fat) or Control Diet (CD; 10% fat). After metabolic testing, founders (F0) were bred with controls, establishing the F1 generation. Germ cells from F0 males were isolated and their RNA sequenced. F1 rats were bred with control rats at 17 weeks to generate F2 offspring. FINDINGS: HFD resulted in 9.7% and 14.7% increased weight in male and female F0 respectively. F1 offspring of HFD mothers were heavier than controls. F1 daughters of HFD-fed males were also heavier. F2 male offspring derived from HFD-fed maternal grandfathers were 7.2% heavier, and exhibited increases of 31% in adiposity, 97% in plasma leptin and 300% in luteinising hormone to testosterone ratio. HFD exposure did not alter the F0 GC transcriptome. CONTROLS: Matched CD was consumed by all animals not consuming the HFD. Animals were compared to a parallel cohort of CD rats. CONCLUSIONS: HFD consumption by maternal grandfathers results in a disrupted metabolic phenotype in grandsons. This effect is not mediated by alterations to the GC transcriptome. Overall design: Male rats high fat diet vs. control diet. 4 replicates per condition. SmallRNA seq and mRNAseq for each replicate and condition
High-fat diet disrupts metabolism in two generations of rats in a parent-of-origin specific manner.
No sample metadata fields
View SamplesMultiple myeloma is a fatal hematological malignancy. In order to develop effective therapeutic approaches, it is critical to understand the pathogenesis of myeloma. The Radl 5T model of multiple myeloma is a clinically relevant murine model where myeloma spontaneously occurs in aged, in-bred C57BlKalwRij mice and can be propagated by intravenous inoculation of 5T myeloma cells into mice of the same strain. Importantly inoculation of 5T myeloma cells into C57Bl6 mice does not result in myeloma, demonstrating that the bone marrow (BM) microenvironment of the C57BlKalwRij strain provides a unique and permissive milieu for myeloma development. We hypothesized that cells of the BM microenvironment may provide essential stimuli for the development of multiple myeloma in vivo. We aim to determine the differences in expression within the bone marrow of C57Bl/KalwRij mice.
Host-derived adiponectin is tumor-suppressive and a novel therapeutic target for multiple myeloma and the associated bone disease.
No sample metadata fields
View SamplesPurpose: To understand the molecular mechanisms underlying NPM1c-mediated tumorigenesis by comparing the transcriptome of de novo generated bulk human leukemic cells and leukemic stem cells Overall design: Human hematopoietic stem/progenitor cells (HSPC) are transduced with lentiviruses expressing a mutated form of Nucleophosmin (NPM1c). Following engraftment into immunodeficient mice, transduced HSPCs give rise to human myeloid leukemia whereas untransduced HSPCs give rise to human immune cells in the same mice. The de novo AML, with CD123+ leukemic stem cells (LSC), resembles NPM1c+ AML from patients.
Induction and Therapeutic Targeting of Human NPM1c<sup>+</sup> Myeloid Leukemia in the Presence of Autologous Immune System in Mice.
Specimen part, Subject
View SamplesPurpose: Identification of relevant genetic pathways that are altered with aging knowing that the precursors for bone-forming osteoblasts reside in the mesenchymal cell population of bone marrow. Method: harvested and characterized, without in vitro culture, mesenchymal cells form human bone marrow capable of osteogenic differentiation Results: Identification of differentially regulated genes with aging in a highly enriched human bone marrow mesenchymal cell population. Conclusions: we have for the first time identified age-related differential gene expression and DNA methylation patterns in a highly enriched human bone marrow mesenchymal cell populationprofiles. Our results show that NGS offers a comprehensive and more accurate quantitative and qualitative evaluation of mRNA content within a cell or tissue. We conclude that RNA-seq based transcriptome characterization would expedite genetic network analyses and permit the dissection of complex biologic functions. Overall design: Examination of gene expression and DNA methylation patterns from a highly enriched bone marrow mesenchymal cell population from young (mean age, 28.7 years) versus old (mean age, 73.3 years) women
Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.
Specimen part, Subject
View Samples