Cancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesCancer types with lower mutational load and a non-permissive tumor microenvironment are intrinsically resistant to immune checkpoint blockade. While the combination of cytostatic drugs and immunostimulatory antibodies constitutes an attractive concept for overcoming this refractoriness, suppression of immune cell function by cytostatic drugs may limit therapeutic efficacy. Here we show that targeted inhibition of mitogen-activated protein kinase (MAPK) kinase (MEK) does not impair dendritic cell-mediated T-cell priming and activation. Accordingly, combining MEK inhibitors (MEKi) with agonist antibodies (Abs) targeting the immunostimulatory CD40 receptor resulted in potent synergistic anti-tumor efficacy. Detailed analysis of the mechanism of action of MEKi GDC-0623 by means of flow cytometric analysis of the tumor immune infiltrate and whole tumor transcriptomics showed that, in addition to its cytostatic impact on tumor cells, this drug exerts multiple pro-immunogenic effects, including the suppression of M2-type macrophages, myeloid derived suppressor cells and CD4+ T-regulatory cells. In addition, MEKi was found to induce tumor-cell intrinsic interferon signaling, which contributed to antigen presentation by tumor cells. Finally, the tumoridical impact of MEKi involves the activation of multiple pro-inflammatory pathways involved in immune cell effector function in the tumor microenvironment. Our data therefore indicate that the combination of MEK inhibition with agonist anti-CD40 Ab is a promising therapeutic concept, especially for the treatment of mutant Kras-driven tumors such as pancreatic ductal adenocarcinoma.
Proimmunogenic impact of MEK inhibition synergizes with agonist anti-CD40 immunostimulatory antibodies in tumor therapy.
Specimen part
View SamplesWe have identified desmoglein 2 (DSG2) as the primary high-affinity receptor used by adenovirus (Ad) serotypes Ad3, Ad7, and Ad14. These serotypes represent important human pathogens causing respiratory tract infections. In epithelial cells, adenovirus binding to DSG2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This improves access to receptors, e.g. CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDd) formed by viral penton and fiber in excess during viral replication, can trigger DSG2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDd. Our findings shed light on adenovirus biology and pathogenesis and have implications for cancer therapy.
Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14.
Specimen part
View SamplesHeterozygous and homozygous Pax2 E11.5 embryos were collected and the intermediate mesoderm was dissected and dispersed into single cells.
Evidence for intermediate mesoderm and kidney progenitor cell specification by Pax2 and PTIP dependent mechanisms.
Specimen part
View SamplesEpstein-Barr virus (EBV) is a ubiquitous gammaherpes virus that establishes a life-long latency in over 90% of the world's population. Epstein Barr Nuclear Antigen 1, EBNA1, is the only viral protein consistently detected in all viral latency programs, as well as in all forms of EBV-associated malignancies. EBNA1 plays critical roles in the viral life cycle by fostering the replication and maintenance of the extrachromosomal viral genome as well as enhancing transcription from multiple viral promoters.
Identifying sites bound by Epstein-Barr virus nuclear antigen 1 (EBNA1) in the human genome: defining a position-weighted matrix to predict sites bound by EBNA1 in viral genomes.
No sample metadata fields
View SamplesVirus infection and over expression of protein in cytosol induce a subset of HSP70s. We named this response the Cytosolic Protein Response (CPR) and have been investigating it in the context of a parallel mechanism in the soluble cytosol with the UPR, and as a subcomponent of the larger HS response. This experiment was carried out to study the transcriptional aspect of CPR. In this analysis, we have triggered CPR by infiltrating proline analogue, L-azetidine-2-carboxylic acid (AZC) into Arabidopsis mature leaves. Since AZC trigger unfolded protein response(UPR) in ER as well as CPR, we have included tunicamycin treatment, which is a specific inducer of UPR to subtract the effect of UPR from the AZC response. Heat shocked samples were included to identify CPR as a subcomponent of larger HS response.
The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis.
No sample metadata fields
View Samples