TaMYB13 is a transcription factor that has been associated with fructan accumulation in previous studies in wheat (Xue et al. 2011 Plant journal 68: 857 - 870). In this study we aimed to find genes regulated by TaMYB13, through overexpression of this transcription factor in wheat and perform expression analysis by making use of Affymetrix genechip assays.
TaMYB13-1, a R2R3 MYB transcription factor, regulates the fructan synthetic pathway and contributes to enhanced fructan accumulation in bread wheat.
Specimen part
View SamplesWe have recently shown a remarkable regenerative capacity of the prenatal heart using a genetic model of mosaic mitochondrial dysfunction in mice. This model is based on inactivation of the X-linked gene encoding holocytochrome c synthase (Hccs) specifically in the developing heart. Loss of HCCS activity results in respiratory chain dysfunction, disturbed cardiomyocyte differentiation and reduced cell cycle activity. The Hccs gene is subjected to X chromosome inactivation, such that in females heterozygous for the heart conditional Hccs knockout approximately 50% of cardiac cells keep the defective X chromosome active and develop mitochondrial dysfunction while the other 50% remain healthy. During heart development, however, the contribution of HCCS deficient cells to the cardiac tissue decreases from 50% at midgestation to 10% at birth. This regeneration of the prenatal heart is mediated by increased proliferation of the healthy cardiac cell population, which compensate for the defective cells and allow the formation of a fully functional heart at birth. Here we performed microarray expression ananlyses on 13.5 dpc control and heterozygous Hccs knockout hearts to identify molecular mechanisms that drive embryonic heart regeneration.
Embryonic cardiomyocytes can orchestrate various cell protective mechanisms to survive mitochondrial stress.
Sex, Specimen part
View SamplesWe used microarray-based expression genomics in 25 inbred mouse strains to identify dorsal root ganglion (DRG)-expressed genetic contributors to mechanical allodynia a prominent symptom of chronic pain.
The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors.
Sex, Age, Specimen part
View SamplesUbiquitous expression of ALS-causing mutations in superoxide dismutase 1 (SOD1) provoke non-cell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage is restricted to motor neurons and includes synapse and metabolic abnormalities, endoplasmic reticulum (ER) stress, and selective activation of the PERK arm of the unfolded protein response. PERK activation correlates with what we identify to be a naturally low level of ER chaperones in motor neurons. Early changes in astrocytes are to genes involved in inflammation and metabolism and that are targets of the PPAR and LXR transcription factors. Dysregulation of myelination and lipid signaling pathways and activation of ETS transcription factors occur in oligodendrocytes only after disease initiation. Thus, pathogenesis involves a temporal cascade of cell type selective damage initiating in motor neurons, with subsequent damage within glia driving disease propagation. Overall design: Cell type-specific mRNA was purified by ribosome affinity purification from the spinal cord of bacTRAP reporter mice that label selective cell types by EGFP-tagged ribosome RPL10A. Sequencing libraries were prepared from 3-6 biological replicates for each genotype to determine the mutant induced gene expression changes in specific cell types.
Translational profiling identifies a cascade of damage initiated in motor neurons and spreading to glia in mutant SOD1-mediated ALS.
Sex, Specimen part, Disease stage, Subject
View SamplesThe purpose of this study was to define biomarkers of sensitivty and mechanisms of resistance to the KDM1A/LSD1 inhibtor SP-2509 (HCI-2509) in Ewing sarcoma cell lines. We report that regardless of drug sensitivity all cell lines engage the UPR and ER-stress response following treatment with SP-2509 resulting in apoptotic cytotoxicity. In addition hypersentsitive cell lines shared a common basal transcriptnomic profile, with hypersensitive cell lines signficantly inducing ETS1 which was not observed in sensitive cell lines. Overall design: 6 Ewing sarcoma cell lines were treated with either vehicle control (DMSO) or the reversible LSD1/KDM1A inhibitor SP-2509 (2uM) for 48hrs. Three SP-2509 hypersensitive (IC50< 300nM)(A673, TC32, TC252) and three SP-2509 sensitive (IC50>900nM) (EWS-502, ES-2 and TC71) cell lines were investigated. Paired RNA from three indpendent experiments per cell line was analyzed.
Therapeutic Targeting of KDM1A/LSD1 in Ewing Sarcoma with SP-2509 Engages the Endoplasmic Reticulum Stress Response.
Treatment, Subject
View SamplesWe have identified desmoglein 2 (DSG2) as the primary high-affinity receptor used by adenovirus (Ad) serotypes Ad3, Ad7, and Ad14. These serotypes represent important human pathogens causing respiratory tract infections. In epithelial cells, adenovirus binding to DSG2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This improves access to receptors, e.g. CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDd) formed by viral penton and fiber in excess during viral replication, can trigger DSG2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDd. Our findings shed light on adenovirus biology and pathogenesis and have implications for cancer therapy.
Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14.
Specimen part
View SamplesHeterozygous and homozygous Pax2 E11.5 embryos were collected and the intermediate mesoderm was dissected and dispersed into single cells.
Evidence for intermediate mesoderm and kidney progenitor cell specification by Pax2 and PTIP dependent mechanisms.
Specimen part
View SamplesBackground: First- and third-generation retinoids are the main treatment in acne. Even though efficacious, they lack full selectivity for RAR expressed in the epidermis and infundibulum. Objectives: To characterize the in vitro metabolism and the pharmacology of the novel retinoid trifarotene. Methods: In vitro assays determined efficacy, potency and selectivity on RARs, as well as the activity on the expression of retinoid target genes in human keratinocytes and ex vivo cultured skin. In vivo studies investigated topical comedolytic, anti-inflammatory and depigmenting properties. The trifarotene-induced gene expression profile was investigated in non-lesional skin of acne patients and compared to ex vivo and in vivo models. Finally, the metabolic stability in human keratinocytes and hepatic microsomes was established. Results: Trifarotene is a selective RAR agonist with >20-fold selectivity over RAR and RAR. Trifarotene is active and stable in keratinocytes but rapidly metabolized by human hepatic microsomes, predicting improved safety. In vivo, trifarotene 0.01% applied topically is highly comedolytic and has antiinflammatory and antipigmenting properties. Gene expression studies indicated potent activation of known retinoid-modulated processes (epidermal differentiation, proliferation, stress response, RA metabolism) and novel pathways (proteolysis, transport/skin hydration, cell adhesion) in ex vivo and in vivo models, as well as in human skin after four weeks of topical application of trifarotene 0.005% cream. Conclusion: Based on its RAR selectivity, rapid degradation in human hepatic microsomes and pharmacological properties including potent modulation of epidermal processes, topical treatment with trifarotene is expected to provide strong efficacy combined with a favourable safety profile in acne and ichthyotic disorders.
Nonclinical and human pharmacology of the potent and selective topical retinoic acid receptor-γ agonist trifarotene.
Specimen part
View SamplesEpstein-Barr virus (EBV) is a ubiquitous gammaherpes virus that establishes a life-long latency in over 90% of the world's population. Epstein Barr Nuclear Antigen 1, EBNA1, is the only viral protein consistently detected in all viral latency programs, as well as in all forms of EBV-associated malignancies. EBNA1 plays critical roles in the viral life cycle by fostering the replication and maintenance of the extrachromosomal viral genome as well as enhancing transcription from multiple viral promoters.
Identifying sites bound by Epstein-Barr virus nuclear antigen 1 (EBNA1) in the human genome: defining a position-weighted matrix to predict sites bound by EBNA1 in viral genomes.
No sample metadata fields
View SamplesThis SuperSeries is composed of the SubSeries listed below.
Combined targeting of JAK2 and Bcl-2/Bcl-xL to cure mutant JAK2-driven malignancies and overcome acquired resistance to JAK2 inhibitors.
Specimen part, Disease, Disease stage
View Samples