refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 142 results
Sort by

Filters

Technology

Platform

accession-icon GSE113575
The nuclear Bile Acid Receptor FXR is a PKA- and FOXA2- sensitive Activator of Fasting Hepatic Gluconeogenesis
  • organism-icon Mus musculus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE113549
The nuclear Bile Acid Receptor FXR is a PKA- and FOXA2- sensitive Activator of Fasting Hepatic Gluconeogenesis [modulated FOXA2/FXR]
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Identified genes deregulated in mouse primary hepatocytes after modulation of expression/activity of FOXA2 and FXR in glucagon or insulin state

Publication Title

The nuclear bile acid receptor FXR is a PKA- and FOXA2-sensitive activator of fasting hepatic gluconeogenesis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE28607
Targeted gene correction of LMNA mutations in patient-specific iPSCs
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Gene expression from iPSCs before and after gene correction

Publication Title

Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP071973
Integrated transcriptional analysis unveils the dynamics of cellular differentiation in the developing mouse hippocampus
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The ability to assign expression patterns to individual cell types that constitute a tissue is a major challenge in RNA expression analysis. This especially applies to brain given the plethora of different cells coexisting in that tissue. Here, we derived cell-type specific transcriptome signatures from existing single cell RNA data and integrated these signatures with a newly generated dataset of expression (bulk RNA-seq) of the postnatal developing hippocampus. This integrated analysis allowed us to provide a comprehensive and unbiased prediction of the differentiation drivers for 10 different hippocampal cell types and describe how the different cell types interact to support crucial developmental stages. Our integrated analysis provides a reliable resource of predicted differentiation drivers and insight into the multifaceted aspects of the cells in hippocampus during development. Overall design: 21 RNA-seq samples. For the stages E15, P1, P7, P15, and P30, there are respectively 3, 4, 3, 3, and 6 RNA-seq biological replica (total 19). One RNA-seq sample has two technical replica.

Publication Title

Integrated transcriptional analysis unveils the dynamics of cellular differentiation in the developing mouse hippocampus.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE87567
Transcriptomic analysis of the the liver of Ppara KO mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Livers from wild-type (WT) or Ppara knock-out (Ppara KO) C57Bl6 mice were used to prepare RNA which was then processed for analysis using MoGene-2_0-st Affymetrix microarrays according to standard procedures.

Publication Title

The logic of transcriptional regulator recruitment architecture at <i>cis</i>-regulatory modules controlling liver functions.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE33298
Gene expression analysis of human iPSC generated from pathogenic LRRK2 (G2019S) mutation bearing patients
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population. In this study, we generated human induced pluripotent stem cell (iPSC) lines from LRRK2 (G2019S) bearing patient fibroblasts by cell reprogramming.

Publication Title

Progressive degeneration of human neural stem cells caused by pathogenic LRRK2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36321
Gene expression analysis of H9 hESC derived neuron stem cells (NSC) harboring pathogenic LRRK2 (G2019S) mutation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Genetic mutations on leucine-rich repeat kinase 2 (LRRK2) have been associated with an increased risk of Parkinson's disease. The Gly2019Ser (G2019S) mutation on LRRK2 gene is a relatively common cause of familial Parkinson's disease in Caucasian population.

Publication Title

Progressive degeneration of human neural stem cells caused by pathogenic LRRK2.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26362
Whole-genome study reveals distinct mechanisms used by p53 to regulate activated and repressed genes in embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE26360
Genome-wide analysis revealed a crosstalk between p53 and the pluripotent gene networks in mouse embryonic stem cells (expression)
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The tumor suppressor p53 regulates the differentiation of embryonic stem (ES) cells upon DNA damage. However, our understanding of this critical tumor suppressive role of p53 in ES cells is limited, mainly because of the lack of molecular mechanism. Here, we report a widespread cross-regulation of p53-mediated DNA damage signaling and the pluripotent gene network in ES cells using chromatin-immunoprecipitation assay-based sequencing (ChIP-seq) and gene expression microarray. Upon DNA damage, p53 directly regulates the transcription of 3644 genes (p<0.005) in mouse ES cells. Genome-wide analysis revealed a dramatic difference between the regulation of p53-activated and -repressed genes. p53 mainly regulates the promoter regions of activated genes, whereas the main regulatory regions for repressed genes reside in distal regions. Among p53-repressed genes, many are pluripotent transcription factors of ES cells, such as Oct4, Nanog, Sox2, Esrrb, c-Myc, n-Myc and Sall4. Strikingly, these transcriptional factors also directly regulate the transcription of the Trp53 gene, highlighting a previously under-estimated transcriptional regulation of p53 in ES cells. Therefore, p53 signaling and ES pluripotent transcriptional networks form an intertwined circuitry. Together, our results provide mechanistic insights into the crosstalk of p53-mediated DNA damage and ES cell "stemness" transcriptional gene networks and shed light on the tumor suppressive function of p53 in ES cells.

Publication Title

Distinct regulatory mechanisms and functions for p53-activated and p53-repressed DNA damage response genes in embryonic stem cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE67286
Establishment of human iPSC-based models for the study and targeting of glioma initiating cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Establishment of human iPSC-based models for the study and targeting of glioma initiating cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact